LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer
Languages: English
Types: Unknown
Subjects: QA76
Data refinement in a state-based language such as Z is defined using a relational model in terms of the behaviour of abstract programs. Downward and upward simulation conditions form a sound and jointly complete methodology to verify relational data refinements, which can be checked on an event-by-event basis rather than per trace. In models of concurrency, refinement is often defined in terms of sets of observations, which can include the events a system is prepared to accept or refuse, or depend on explicit properties of states and transitions. By embedding such concurrent semantics into a relational one, eventwise verification methods for such refinement relations can be derived. In this paper we continue our program of deriving simulation conditions for process algebraic refinement by considering how notions of time should be embedded into a relational model, and thereby deriving relational notions of timed refinement.

Share - Bookmark

Cite this article