LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Institute of Physics
Languages: English
Types: Article
Subjects: QA, QC, Mathematical Physics, High Energy Physics - Theory, Nonlinear Sciences - Exactly Solvable and Integrable Systems
We investigate the Manakov model or, more generally, the vector nonlinear Schr\"odinger equation on the half-line. Using a B\"acklund transformation method, two classes of integrable boundary conditions are derived: mixed Neumann/Dirichlet and Robin boundary conditions. Integrability is shown by constructing a generating function for the conserved quantities. We apply a nonlinear mirror image technique to construct the inverse scattering method with these boundary conditions. The important feature in the reconstruction formula for the fields is the symmetry property of the scattering data emerging from the presence of the boundary. Particular attention is paid to the discrete spectrum. An interesting phenomenon of transmission between the components of a vector soliton interacting with the boundary is demonstrated. This is specific to the vector nature of the model and is absent in the scalar case. For one-soliton solutions, we show that the boundary can be used to make certain components of the incoming soliton vanishingly small. This is reminiscent of the phenomenon of light polarization by reflection.

Share - Bookmark

Cite this article