Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bruzzi, E.; Stace, Anthony J. (2017)
Publisher: Royal Society
Journal: Royal Society Open Science
Languages: English
Types: Article
Subjects: Chemistry, Research Article, calcium, 1002, 39, 108, solvation shell, 150, water, binding energy
Further understanding of the biological role of the Ca2+ ion in an aqueous environment requires quantitative measurements of both the short- and long-range interactions experienced by the ion in an aqueous medium. Here, we present experimental measurements of binding energies for water molecules occupying the second and, quite possibly, the third solvation shell surrounding a central Ca2+ ion in [Ca(H2O)n]2+ complexes. Results for these large, previously inaccessible, complexes have come from the application of finite heat bath theory to kinetic energy measurements following unimolecular decay. Even at n = 20, the results show water molecules to be more strongly bound to Ca2+ than would be expected just from the presence of an extended network of hydrogen bonds. For n > 10, there is very good agreement between the experimental binding energies and recently published density functional theory calculations. Comparisons are made with similar data recorded for [Ca(NH3)n]2+ and [Ca(CH3OH)n]2+ complexes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Kohagen M, Mason PE, Jungwirth P. 2014 Accurate increasing cluster size. J. Am. Chem. Soc. 130, description of calcium solvation in concentrated 15 482-15 489. (doi:10.1021/ja804621r) aqueous solutions. J. Phys. Chem. B 118, 7902-7909. 6. Lei XL, Pan BC. 2010 Structures, stability, vibrational (doi:10.1021/jp5005693) entropy and IR spectra of hydrated calcium ion
    • 2. Ohtaki H, Radnai T. 1993 Structure and dynamics clusters [Ca(H2O)n]2+ (n = 1-20, 27): a systematic of hydrated ions. Chem. Rev. 93, 1157-1204. investigation by density functional theory. (doi:10.1021/cr00019a014) J. Phys. Chem. A 114, 7595-7603. (doi:10.1021/jp
    • 3. Megyes T, Grósz T, Radnai T, Bakó I, Pálinkás G. 102588m) 2004 Solvation of calcium ion in polar solvents: an 7. Bai G, Yi H-B, Li H-J, Xu J-J. 2013 Hydration X-ray difraction and ab initio study. J. Phys. Chem. characteristics of Ca2+ and Mg2+: a density A 108, 7261-7271. (doi:10.1021/jp048838m) functional theory, polarized continuum model and
    • 4. Bush MF, Saykally RJ, Williams ER. 2007 Hydration molecular dynamics investigation. Mol. Phys. 111, of the calcium dication: direct evidence for second 553-568. (doi:10.1080/00268976.2012.737035) shell formation from infrared spectroscopy. 8. Stace AJ. 2002 Metal ion solvation in the gas phase: ChemPhysChem 8, 2245-2253. (doi:10.1002/cphc. the quest for higher oxidation states. J. Phys. Chem. 200700404) A 106, 7993-8005. (doi:10.1021/jp020694)
    • 5. Bush MF, Saykally RJ, Williams ER. 2008 Infrared 9. Jayaweera P, Blades AT, Ikonomou MG, Kebarle P. action spectra of Ca2+(H2O)11-69 exhibit spectral 1990 Production and study in the gas phase of signatures for condensed-phase structures with multiply charged solvated or coordinated metal ions. J. Am. Chem. Soc. 112, 2452-2454. (doi:10.1021/ja00162a074)
    • 10. Blades AT, Jayaweera P, Ikonomou MG, Kebarle P. 1990 Studies of alkaline-earth and transition metal M++ gas-phase ion chemistry. J. Chem. Phys. 92, 5900-5906. (doi:10.1063/1.458360)
    • 11. Blades AT, Jayaweera P, Ikonomou MG, Kebarle P. 1990 First studies of the gas-phase ion chemistry of M3+ metal-ion ligands. Int. J. Mass Spectrom. Ion Process. 101, 325-336. (doi:10.1016/0168-1176 (90)87020-H)
    • 12. Blades AT, Jayaweera P, Ikonomou MG, Kebarle P. 1990 Ion-molecule clusters involving doubly charged metal-ions (M2+). Int. J. Mass Spectrom. Ion Process. 102, 251-267. (doi:10.1016/0168-1176 (90)80064-A)
    • 13. Peschke M, Blades AT, Kebarle P. 1998 Hydration energies and entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from gas-phase ion-water molecule equilibria determinations. J. Phys. Chem. A 102, 9978-9985. (doi:10.1021/jp9821127)
    • 14. Rodriguez-Cruz, SE, Jockusch RA, Williams, ER. 1998 Hydration energies of divalent metal ions, Ca2+(H2O)n (n = 5-7) and Ni2+(H2O)n (n = 6-8), obtained by blackbody infrared radiative dissociation. J. Am. Chem. Soc. 120, 5842-5843. (doi:10.1021/ja980716i)
    • 15. Rodriguez-Cruz, SE, Jockusch RA, Williams, ER. 1999 Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5-7, M = Mg, Ca, Sr, and Ba. J. Am. Chem. Soc. 121, 8898-8906. (doi:10.1021/ja9911871)
    • 16. Cooper, TE, Carl DR, Armentrout PB. 2009 Hydration energies of Zn(II): threshold collision-induced dissociation experiments and theoretical studies. J. Phys. Chem. A 113, 13 727-13 741. (doi:10.1021/ jp906235y)
    • 17. Carl DR, Chatterjee BK, Armentrout PB. 2010 Thresold collision-induced dissociation of Sr2+(H2O)x complexes (x = 1-6): an experimental and theoretical investigation of the complete inner shell hydration energies of Sr2+. J. Chem. Phys. 132, 044303. (doi:10.1063/1.3292646)
    • 18. Carl DR, Armentrout PB. 2012 Experimental investigation of the complete inner shell hydration energies of Ca2+: threshold collision-induced dissociation of Ca2+(H2O)x complexes (x = 2-8). J. Phys. Chem. A 116, 3802-3815. (doi:10.1021/ jp301446v)
    • 19. Hofstetter TE, Armentrout PB. 2013 Threshold collision-induced dissociation and theoretical studies of hydrated Fe(II): binding energies and Coulombic barrier heights. J. Phys. Chem. A 117, 1110-1123. (doi:10.1021/jp3044829)
    • 20. Carl DR, Armentrout PB. 2013 Threshold collision-induced dissociation of hydrated magnesium: experimental and theoretical investigation of the binding energies for Mg2+(H2O)x complexes (x = 2-10). Chem Phys Chem 14, 681-697. (doi:10.1002/cphc.201200860)
    • 21. Klots CE. 1985 Evaporative cooling. J. Chem. Phys. 83, 5854-5860. (doi:10.1063/1.449615)
    • 22. Klots CE. 1987 Temperatures of evaporating clusters. Nature 327, 222-223. (doi:10.1038/327222a0)
    • 23. Klots CE. 1988 Evaporation from small particles. J. Phys. Chem. 92, 5864-5868. (doi:10.1021/ j100332a005)
    • 24. Klots CE. 1988 The reaction coordinate and its limitations-an experimental perspective. Acc. Chem. Res. 21, 16-21. (doi:10.1021/ar00145a003)
    • 25. Klots CE. 1989 Thermal kinetics in small systems. J. Chem. Phys. 90, 4470-4472. (doi:10.1063/1. 456633)
    • 26. Bruzzi E, Raggi G, Parajuli R, Stace AJ. 2014 Experimental binding energies for the metal complexes [Mg(NH3)n]2+, [Ca(NH3)n]2+, and [Sr(NH3)n]2+ for n in the range 4-20 determined from kinetic energy release measurements. J. Phys. Chem. 118, 8525-8532. (doi:10.1021/jp 5022642)
    • 27. Bruzzi E, Stace AJ. 2014 Experimental binding energies for the metal complexes [Mg(CH3OH)n]2+, [Ca(CH3OH)n]2+, and [Sr(CH3OH)n]2+ for n in the range 4-20. J. Phys. Chem. 118, 9357-9363. (doi:10.1021/jp508131h)
    • 28. Walker NR, Wright RR, Stace AJ. 1999 Stable Ag(II) complexes in the gas phase. J. Am. Chem. Soc. 121, 4837-4844. (doi:10.1021/ja982781y)
    • 29. Walker, NR, Dobson M, Wright RR, Barran PE, Murrell JN, Stace AJ. 2000 A gas-phase study of the coordination of Mg2+ with oxygen- and nitrogen-containing ligands. J. Am. Chem. Soc. 122, 11 138-11 145. (doi:10.1021/ja0007509)
    • 30. Walker, NR, Wright RR, Barran PE, Murrell JN, Stace AJ. 2001 Comparisons in the behaviour of stable copper(II), silver(II) and gold(II) complexes in the gas phase: are there implications for condensed-phase chemistry? J. Am. Chem. Soc. 123, 4223-4227. (doi:10.1021/ja003431q)
    • 31. Cooks RG, Beynon JH, Caprioli RM, Lester GR. 1973 Metastable ions. Amsterdam, The Netherlands: Elsevier.
    • 32. Chen X, Stace AJ. 2012 A gas phase perspective on the Lewis acidity of metal ions in aqueous solution. Chem. Commun. 48, 10 292-10 294. (doi:10.1039/ c2cc35859j)
    • 33. Lethbridge PG, Stace AJ. 1988 Reactivity-structure correlations in ion clusters-a study of the unimolecular fragmentation patterns of argon cluster ions, Arn+, for n in the range 30-200. J. Chem. Phys. 89, 4062-4073. (doi:10.1063/1.454841)
    • 34. Menzinger M, Wolfgang R. 1969 Meaning and use of Arrhenius activation energy. Angew. Chem. Int. Edit. 8, 438-444. (doi: 10.1002/anie.196904381)
    • 35. Bruzze E, Parajuli R, Stace AJ. 2013 Binding energies determined from kinetic energy release measurements following the evaporation of single molecules from the molecular clusters H+(H2O)n, H+(NH3)n and H+(CH3OH)n. Int. J. Mass Spectrom. 333, 1-7. (doi:10.1016/j.ijms.2012.08.003)
    • 36. Walters RS, Pillai ED, Duncan MA. 2005 Solvation dynamics in Ni+(H2O)n clusters probed with infrared spectroscopy. J. Am. Chem. Soc. 127, 16 599-16 610. (doi: 10.1021/ja0542587)
    • 37. Stace A, Bruzzi E. 2016 Data from: Experimental measurements of water molecule binding energies for the second and third solvation shells of [Ca(H2O)n]2+ complexes. Dryad Digital Repository. (doi:10.5061/dryad.fv4b5)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok