Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Connally, E; Ward, David; Howell, P; Watkins, K. E. (2013)
Publisher: Elsevier
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: nervous system diseases
White matter tractsc onnecting areas involved in speech and motor control were examined using diffusion-tensor imagingingin a sample of peoplewhostutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend ourknowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotorcortex,\ud cerebral peduncles and posteriorcorpus callosum in people who stutter, relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within theleft corticobulbar tract in people who stutter. Region-of-interest analyses revealed \ud reduced white matter integrity in people whostutter in the three pairs ocerebellar peduncles thatcarry the afferent and efferent fibers of the cerebellum. Within thegroup of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the leftangular gyrus but the greater the white matter connectivity in theleft corticobulbartract. Also,in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural \ud basis of stuttering and which reflect experience-dependent plasticity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alm,  P.  A.  (2004).  Stuttering  and  the  basal  ganglia  circuits:  a  critical  review  of   possible  relations.  Journal  of  communication  disorders,  37(4),  325-369.    
    • Andrews,  G.,  &  Harris,  M.  (1964).  The  Syndrome  of  Stuttering.  London,  UK:   William  Heinemann  Medical  Books.  
    • Badcock,  N.  A.,  Bishop,  D.  V.  M.,  Hardiman,  M.  J.,  Barry,  J.  G.,  &  Watkins,  K.  E.   (2012).  Co-­‐localisation  of  abnormal  brain  structure  and  function  in  specific   language  impairment.  Brain  and  language,  120(3),  310-20.    
    • Balasubramanian,  V.,  Max,  L.,  Van  Borsel,  J.,  Rayca,  K.  O.,  &  Richardson,  D.  (2003).   Acquired  stuttering  following  right  frontal  and  bilateral  pontine  lesion:  a   case  study.  Brain  Cogn,  53(2),  185-189.    
    • Bates,  E.,  Vicari,  S.,  &  Trauner,  D.  (1999).  Neural  mediation  of  language   development:  perspectives  from  lesion  studies  of  infants  and  children.  In  H.   Tager-­‐Flusberg  (Ed.),  Neurodevelopmental  Disorders  (pp.  533-581).   Cambridge,  MA:  MIT  Press.  
    • Beaulieu,  C.  (2009).  The  biological  basis  of  diffusion  anisotropy.  In  H.  Johansen-­‐ Berg  and  T.  Behrens  (Eds.),  Diffusion  MRI:  from  quantitative  measurement  to  
    • Belton,  E.,  Salmond,  C.  H.,  Watkins,  K.  E.,  Vargha-­‐Khadem,  F.,  &  Gadian,  D.  G.   (2003).  Bilateral  brain  abnormalities  associated  with  dominantly  inherited   verbal  and  orofacial  dyspraxia.  Hum  Brain  Mapp,  18(3),  194-200.  
    • Bonekamp,  D.,  Nagae,  L.  M.,  Degaonkar,  M.,  Matson,  M.,  Abdalla,  W.  M.  A.,  Barker,   P.  B.,  Mori,  S.,  et  al.  (2007).  Diffusion  tensor  imaging  in  children  and  
    • Brown,  S.,  Ingham,  R.  J.,  Ingham,  J.  C.,  Laird,  A.  R.,  &  Fox,  P.  T.  (2005).  Stuttered   and  fluent  speech  production:  An  ALE  meta-­‐analysis  of  functional   neuroimaging  studies.  Human  Brain  Mapping,  25(1),  105-117.    
    • Choo,  A.  L.,  Chang,  S.-­‐E.,  Zengin-­‐Bolatkale,  H.,  Ambrose,  N.  G.,  &  Loucks,  T.  M.   (2012).  Corpus  callosum  morphology  in  children  who  stutter.  Journal  of   communication  disorders,  45(4),  279-89.  
    • Choo,  A.  L.,  Kraft,  S.  J.,  Olivero,  W.,  Ambrose,  N.  G.,  Sharma,  H.,  Chang,  S.-­‐E.,  &   Loucks,  T.  M.  (2011).  Corpus  callosum  differences  associated  with  persistent   stuttering  in  adults.  Journal  of  communication  disorders,  44(4),  470-7.    
    • Cykowski,  M.  D.,  Fox,  P.  T.,  Ingham,  R.  J.,  Ingham,  J.  C.,  &  Robin,  D.  A.  (2010).  A   study  of  the  reproducibility  and  etiology  of  diffusion  anisotropy  differences   in  developmental  stuttering:  a  potential  role  for  impaired  myelination.   NeuroImage,  52(4),  1495-1504.    
    • Cykowski,  M.  D.,  Kochunov,  P.  V.,  Ingham,  R.  J.,  Ingham,  J.  C.,  Mangin,  J.-­‐F.  F.,   Rivière,  D.,  Lancaster,  J.  L.,  et  al.  (2007).  Perisylvian  Sulcal  Morphology  and   Cerebral  Asymmetry  Patterns  in  Adults  Who  Stutter.  Cereb  Cortex,  18(3),   571-583.  
    • De  Nil,  L.  F.,  Kroll,  R.  M.,  Kapur,  S.,  &  Houle,  S.  (2000).  A  positron  emission   tomography  study  of  silent  and  oral  single  word  reading  in  stuttering  and   nonstuttering  adults.  J  Speech  Lang  Hear  Res,  43(4),  1038-1053.  
    • Diedrichsen,  J.  (2006).  A  spatially  unbiased  atlas  template  of  the  human   cerebellum.  NeuroImage,  33(1),  127-38.    
    • Doi,  M.,  Nakayasu,  H.,  Soda,  T.,  Shimoda,  K.,  Ito,  A.,  &  Nakashima,  K.  (2003).   Brainstem  infarction  presenting  with  neurogenic  stuttering.  Intern  Med,   42(9),  884-887.  
    • Douaud,  G.,  Smith,  S.,  Jenkinson,  M.,  Behrens,  T.,  Johansen-­‐Berg,  H.,  Vickers,  J.,   James,  S.,  et  al.  (2007).  Anatomically  related  grey  and  white  matter   abnormalities  in  adolescent-­‐onset  schizophrenia.  Brain,  130(Pt  9),  2375- 2386.    
    • Foundas,  A.  L.,  Bollich,  A.  M.,  Corey,  D.  M.,  Hurley,  M.,  &  Heilman,  K.  M.  (2001).   Anomalous  anatomy  of  speech-­‐language  areas  in  adults  with  persistent   developmental  stuttering.  Neurology,  57(2),  207-215.  
    • Foundas,  A.  L.,  Bollich,  A.  M.,  Feldman,  J.,  Corey,  D.  M.,  Hurley,  M.,  Lemen,  L.  C.,  &   Heilman,  K.  M.  (2004).  Aberrant  auditory  processing  and  atypical  planum   temporale  in  developmental  stuttering.  Neurology,  63(9),  1640-1646.  
    • Foundas,  A.  L.,  Corey,  D.  M.,  Angeles,  V.,  Bollich,  A.  M.,  Crabtree-­‐Hartman,  E.,  &   Heilman,  K.  M.  (2003).  Atypical  cerebral  laterality  in  adults  with  persistent   developmental  stuttering.  Neurology,  61(10),  1378-1385.  
    • Geschwind,  N.  (1975).  The  apraxias:  neural  mechanisms  of  disorders  of  learned   movement.  American  scientist,  63(2),  188-95.  
    • Giorgio,  A.,  Watkins,  K.  E.,  Chadwick,  M.,  James,  S.,  Winmill,  L.,  Douaud,  G.,  De   Stefano,  N.,  et  al.  (2010).  Longitudinal  changes  in  grey  and  white  matter   during  adolescence.  NeuroImage,  49(1),  94-103.    
    • Giraud,  A.-­‐L.  L.,  Neumann,  K.,  Bachoud-­‐Levi,  A.-­‐C.  C.,  von  Gudenberg,  A.  W.,  Euler,   H.  A.,  Lanfermann,  H.,  &  Preibisch,  C.  (2008).  Severity  of  dysfluency   correlates  with  basal  ganglia  activity  in  persistent  developmental  stuttering.   Brain  Lang,  104(2),  190-199.    
    • Greve,  D.  N.,  &  Fischl,  B.  (2009).  Accurate  and  robust  brain  image  alignment   using  boundary-­‐based  registration.  NeuroImage,  48(1),  63-72.  
    • Hillis,  A.  E.  (2007).  Aphasia:  progress  in  the  last  quarter  of  a  century.  Neurology,   69(2),  200-13.    
    • Howell,  P.  (2004).  Assessment  of  some  contemporary  theories  of  stuttering  that   apply  to  spontaneous  speech.  Contemporary  Issues  in  Communicative   Sciences  and  Disorders,  39,  122-139.  
    • Howell,  P.  (2010).  Behavioral  effects  arising  from  the  neural  substrates  for   atypical  planning  and  execution  of  word  production  in  stuttering.   Experimental  neurology,  225(1),  55-9.    
    • Ingham,  R.  J.,  Fox,  P.  T.,  Ingham,  J.  C.,  Xiong,  J.,  Zamarripa,  F.,  Hardies,  L.  J.,  &   Lancaster,  J.  L.  (2004).  Brain  correlates  of  stuttering  and  syllable   production:  gender  comparison  and  replication.  J  Speech  Lang  Hear  Res,   47(2),  321-341.  
    • Jancke,  L.,  Hanggi,  J.,  &  Steinmetz,  H.  (2004).  Morphological  brain  differences   between  adult  stutterers  and  non-­‐stutterers.  BMC  Neurology,  4,  23.  
    • Jones,  D.  K.,  Knösche,  T.  R.,  &  Turner,  R.  (2012).  White  Matter  Integrity,  Fiber   Count,  and  Other  Fallacies:  The  Do's  and  Don'ts  of  Diffusion  MRI.   NeuroImage,  null(null).    
    • Kell,  C.  A.,  Neumann,  K.,  von  Kriegstein,  K.,  Posenenske,  C.,  von  Gudenberg,  A.  W.,   Euler,  H.,  &  Giraud,  A.-­‐L.  L.  (2009).  How  the  brain  repairs  stuttering.  Brain,   132(Pt  10),  2747-2760.    
    • Klein,  J.  C.,  Lorenz,  B.,  Kang,  J.-­‐S.,  Baudrexel,  S.,  Seifried,  C.,  van  de  Loo,  S.,   Steinmetz,  H.,  et  al.  (2011).  Diffusion  tensor  imaging  of  white  matter   involvement  in  essential  tremor.  Human  brain  mapping,  32(6),  896-904.  
    • Loucks,  T.,  Kraft,  S.  J.,  Choo,  A.  L.,  Sharma,  H.,  &  Ambrose,  N.  G.  (2011).  Functional   brain  activation  differences  in  stuttering  identified  with  a  rapid  fMRI   sequence.  Journal  of  Fluency  Disorders.    
    • Lu,  C.,  Chen,  C.,  Ning,  N.,  Ding,  G.,  Guo,  T.,  Peng,  D.,  Yang,  Y.,  et  al.  (2010).  The   neural  substrates  for  atypical  planning  and  execution  of  word  production  in   stuttering.  Experimental  Neurology,  221(1),  146-156.    
    • Lu,  C.,  Chen,  C.,  Peng,  D.,  You,  W.,  Zhang,  X.,  Ding,  G.,  Deng,  X.,  et  al.  (2012).  Neural   anomaly  and  reorganization  in  speakers  who  stutter:  A  short-­‐term   intervention  study.  Neurology,  79(7),  625-32.    
    • Ludlow,  C.  L.,  &  Loucks,  T.  (2003).  Stuttering:  a  dynamic  motor  control  disorder.   Journal  of  Fluency  Disorders,  28,  273-295.  
    • Max,  L.,  Guenther,  F.  H.,  Gracco,  V.  L.,  Ghosh,  S.,  S.,  &  Wallace,  M.  E.  (2004).   Unstable  or  Insufficiently  Activated  Internal  Models  and  Feedback-­‐Biased   Motor  Control  as  Sources  of  Dysfluency:  A  Theoretical  M.  Contemporary   Issues  in  Communication  Science  and  Disorders,  31,  105-122.  
    • Miall,  R.  C.,  Weir,  D.  J.,  Wolpert,  D.  M.,  &  Stein,  J.  F.  (1993).  Is  the  cerebellum  a   smith  predictor?  Journal  of  motor  behavior,  25(3),  203-16.    
    • Mock,  J.  R.,  Zadina,  J.  N.,  Corey,  D.  M.,  Cohen,  J.  D.,  Lemen,  L.  C.,  &  Foundas,  A.  L.   (2012).  Atypical  brain  torque  in  boys  with  developmental  stuttering.   Developmental  neuropsychology,  37(5),  434-52.    
    • Månsson,  H.  (2000).  Childhood  stuttering.  Journal  of  Fluency  Disorders,  25(1),  47- 57.    
    • Neilson,  M.  D.,  &  Neilson,  P.  D.  (1987).  Speech  motor  control  and  stuttering:  A   computational  model  of  adaptive  sensory-­‐motor  processing.  Speech   Communication,  6(4),  325-333.    
    • Petrides,  M.,  &  Pandya,  D.  N.  (2002).  Association  pathways  of  the  prefrontal   cortex  and  functional  observations.  In  D.  T.  Stuss  &  R.  T.  Knight  (Eds.),   Principles  of  frontal  lobe  function.  (pp.  31-50).  Oxford  University  Press.  
    • Riley,  G.  D.  (1994).  SSI-­‐3  Stuttering  Severity  Instrument  for  Children  and  Adults   (Third.).  Austin,  TX:  Pro-­‐Ed.  
    • Smith,  S.  M.,  Jenkinson,  M.,  Johansen-­‐Berg,  H.,  Rueckert,  D.,  Nichols,  T.  E.,  Mackay,   C.  E.,  Watkins,  K.  E.,  et  al.  (2006).  Tract-­‐based  spatial  statistics:  voxelwise   analysis  of  multi-­‐subject  diffusion  data.  NeuroImage,  31(4),  1487-1505.  
    • Sommer,  M.,  Koch,  M.  A.,  Paulus,  W.,  Weiller,  C.,  &  Büchel,  C.  (2002).   Disconnection  of  speech-­‐relevant  brain  areas  in  persistent  developmental   stuttering.  Lance,  360(9330),  380-383.  
    • Strub,  R.  L.,  Black,  F.  W.,  &  Naeser,  M.  A.  (1987).  Anomalous  dominance  in  sibling   stutterers:  evidence  from  CT  scan  asymmetries,  dichotic  listening,   neuropsychological  testing,  and  handedness.  Brain  Lang,  30(2),  338-350.  
    • Travis,  L.  E.  (1978).  The  cerebral  dominance  theory  of  stuttering:  1931-­‐-­‐1978.   The  Journal  of  speech  and  hearing  disorders,  43(3),  278-81.  
    • Vargha-­‐Khadem,  F.,  Isaacs,  E.,  Watkins,  K.  E.,  &  Mishkin,  M.  (2000,  November  7).   Ontogenetic  specialisation  of  hemispheric  function.  W.B  Suanders.  
    • Watkins,  K.  E.,  Smith,  S.  S.  M.,  Davis,  S.,  &  Howell,  P.  (2008).  Structural  and   functional  abnormalities  of  the  motor  system  in  developmental  stuttering.   Brain  :  a  journal  of  neurology,  131(Pt  1),  50-9.    
    • Wolpert,  D.  M.,  Miall,  R.  C.,  &  Kawato,  M.  (1998).  Internal  models  in  the   cerebellum.  Trends  in  Cognitive  Sciences,  2(9),  338-347.    
    • Xuan,  Y.,  Meng,  C.,  Yang,  Y.,  Zhu,  C.,  Wang,  L.,  Yan,  Q.,  Lin,  C.,  et  al.  (2012).  Resting-­‐ state  brain  activity  in  adult  males  who  stutter.  (A.  Rodriguez-­‐Fornells,   Ed.)PloS  one,  7(1),  e30570.    
    • Yairi,  E.,  &  Ambrose,  N.  G.  (1999).  Early  childhood  stuttering  I:  persistency  and   recovery  rates.  J  Speech  Lang  Hear  Res,  42(5),  1097-1112.  
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article