LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects:
We present a new method for tracing the evolution of brightest cluster galaxies (BCGs) from z ∼ 2 to z ∼ 0. We conclude on the basis of semi-analytical models that the best method to select BCG progenitors at z ∼ 2 is a hybrid environmental density and stellar mass ranking approach. Ultimately, we are able to retrieve 45 per cent of BCG progenitors. We apply this method on the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Ultra Deep Survey data to construct a progenitor sample at high redshift. We furthermore populate the comparisons in local Universe by using Sloan Digital Sky Survey data with statistically likely contamination to ensure a fair comparison between high and low redshifts. Using these samples we demonstrate that the BCG sizes have grown by a factor of ∼3.2 since z ∼ 2, and BCG progenitors are mainly late-type galaxies, exhibiting less concentrated profiles than their early type local counterparts. We find that BCG progenitors have more disturbed morphologies. In contrast, local BCGs have much smoother profiles. Moreover, we find that the stellar masses of BCGs have grown by a factor of ∼2.5 since z ∼ 2, and the star formation rate of BCG progenitors has a median value of 13.5 Mʘ yr‾¹, much higher than their quiescent local descendants. We demonstrate that over z = 1–2 star formation and merging contribute equally to BCG mass growth. However, merging plays a dominant role in BCG assembly at z ≲ 1. We also find that BCG progenitors at high z are not significantly different from other galaxies of similar mass at the same epoch. This suggests that the processes which differentiate BCGs from normal massive elliptical galaxies must occur at z ≲ 2.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 3.3.2 Contamination in the local Universe
    • 4.3.1 Stellar mass growth
    • Ascaso B., Aguerri J. A. L., Varela J., Cava A., Bettoni D., Moles M., D'Onofrio M., 2011, ApJ, 726, 69
    • Barden M., Jahnke K., Ha¨ußler B., 2008, ApJS, 175, 105
    • Barden M., Ha¨ußler B., Peng C. Y., McIntosh D. H., Guo Y., 2012, MNRAS, 422, 449
    • Bauer A. E., Conselice C. J., Pe´rez-Gonza´lez P. G., Gru¨tzbauch R., Bluck A. F. L., Buitrago F., Mortlock A., 2011, MNRAS, 417, 289
    • Bernardi M., Meert A., Sheth R. K., Vikram V., Huertas-Company M., Mei S., Shankar F., 2013, MNRAS, 436, 697
    • Bernardi M., Meert A., Sheth R. K., Fischer J.-L., Huertas-Company M., Maraston C., Shankar F., Vikram V., 2016, MNRAS, preprint (arXiv:1604.01036)
    • Bertin E., Arnouts S., 1996, A&AS, 117, 393
    • Bluck A. F. L., Conselice C. J., Buitrago F., Gru¨tzbauch R., Hoyos C., Mortlock A., Bauer A. E., 2012, ApJ, 747, 34
    • Bridge C. R., Carlberg R. G., Sullivan M., 2010, ApJ, 709, 1067
    • Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G., Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151
    • Bruce V. A. et al., 2012, MNRAS, 427, 1666
    • Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
    • Buitrago F., Trujillo I., Conselice C. J., Bouwens R. J., Dickinson M., Yan H., 2008, ApJ, 687, L61
    • Buitrago F., Trujillo I., Conselice C. J., Ha¨ußler B., 2013, MNRAS, 428, 1460
    • Burke C., Collins C. A., 2013, MNRAS, 434, 2856
    • Burke D. J., Collins C. A., Mann R. G., 2000, ApJ, 532, L105
    • Burke C., Hilton M., Collins C., 2015, MNRAS, 449, 2353
    • Caon N., Capaccioli M., D'Onofrio M., 1993, MNRAS, 265, 1013
    • Cid Fernandes R., Mateus A., Sodre´ L., Stasin´ska G., Gomes J. M., 2005, MNRAS, 358, 363
    • Collins C. A. et al., 2009, Nature, 458, 603
    • Conroy C., Wechsler R. H., Kravtsov A. V., 2007, ApJ, 668, 826
    • Conselice C. J., Rajgor S., Myers R., 2008, MNRAS, 386, 909
    • Conselice C. J., Bluck A. F. L., Ravindranath S., Mortlock A., Koekemoer A. M., Buitrago F., Gru¨tzbauch R., Penny S. J., 2011, MNRAS, 417, 2770
    • D'Souza R., Vegetti S., Kauffmann G., 2015, MNRAS, 454, 4027
    • Daddi E. et al., 2007, ApJ, 670, 156
    • De Lucia G., Blaizot J., 2007, MNRAS, 375, 2
    • Dubinski J., 1998, ApJ, 502, 141
    • Edwards L. O. V., Patton D. R., 2012, MNRAS, 425, 287
    • Fakhouri O., Ma C.-P., Boylan-Kolchin M., 2010, MNRAS, 406, 2267
    • Fontana A. et al., 2014, A&A, 570, A11
    • Furusawa H. et al., 2008, ApJS, 176, 1
    • Grogin N. A. et al., 2011, ApJS, 197, 35
    • Hartley W. G. et al., 2013, MNRAS, 431, 3045
    • Ha¨ussler B. et al., 2007, ApJS, 172, 615
    • Hopkins P. F., Bundy K., Hernquist L., Wuyts S., Cox T. J., 2010, MNRAS, 401, 1099
    • Hoyos C. et al., 2011, MNRAS, 411, 2439
    • Ilbert O. et al., 2005, A&A, 439, 863
    • Kauffmann G. et al., 2003, MNRAS, 341, 33
    • Koekemoer A. M. et al., 2011, ApJS, 197, 36
    • Kron R. G., 1980, ApJS, 43, 305
    • Lani C. et al., 2013, MNRAS, 435, 207
    • Laporte C. F. P., White S. D. M., Naab T., Ruszkowski M., Springel V., 2012, MNRAS, 424, 747
    • Laporte C. F. P., White S. D. M., Naab T., Gao L., 2013, MNRAS, 435, 901
    • Lawrence A. et al., 2007, MNRAS, 379, 1599
    • Leja J., van Dokkum P., Franx M., 2013, ApJ, 766, 33
    • Lidman C. et al., 2012, MNRAS, 427, 550
    • Lidman C. et al., 2013, MNRAS, 433, 825
    • Lin Y.-T., Brodwin M., Gonzalez A. H., Bode P., Eisenhardt P. R. M., Stanford S. A., Vikhlinin A., 2013, ApJ, 771, 61
    • Liu F. S., Mao S., Deng Z. G., Xia X. Y., Wen Z. L., 2009, MNRAS, 396, 2003
    • Marchesini D. et al., 2014, ApJ, 794, 65
    • Miller C. J. et al., 2005, AJ, 130, 968
    • Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319
    • Mortlock A. et al., 2013, MNRAS, 433, 1185
    • Mortlock A. et al., 2015, MNRAS, 447, 2
    • Muldrew S. I., Pearce F. R., Power C., 2011, MNRAS, 410, 2617
    • Mundy C. J., Conselice C. J., Ownsworth J. R., 2015, MNRAS, 450, 3696
    • Naab T., Johansson P. H., Ostriker J. P., 2009, ApJ, 699, L178
    • Ownsworth J. R., Conselice C. J., Mortlock A., Hartley W. G., Buitrago F., 2012, MNRAS, 426, 764
    • Ownsworth J. R., Conselice C. J., Mortlock A., Hartley W. G., Almaini O., Duncan K., Mundy C. J., 2014, MNRAS, 445, 2198
    • Papovich C. et al., 2006, ApJ, 640, 92
    • Peng C. Y., Ho L. C., Impey C. D., Rix H.-W., 2002, AJ, 124, 266
    • Salim S. et al., 2007, ApJS, 173, 267
    • Se´rsic J. L., 1963, Bol. Asociacion Argentina Astron La Plata Argentina, 6, 41
    • Shankar F. et al., 2015, ApJ, 802, 73
    • Trujillo I., Conselice C. J., Bundy K., Cooper M. C., Eisenhardt P., Ellis R. S., 2007, MNRAS, 382, 109
    • Twite J. W., Conselice C. J., Buitrago F., Noeske K., Weiner B. J., AcostaPulido J. A., Bauer A. E., 2012, MNRAS, 420, 1061
    • van der Wel A. et al., 2014, ApJ, 788, 28
    • van Dokkum P. G. et al., 2004, ApJ, 611, 703
    • van Dokkum P. G. et al., 2010, ApJ, 709, 1018
    • von der Linden A., Best P. N., Kauffmann G., White S. D. M., 2007, MNRAS, 379, 867 (L07)
    • Whiley I. M. et al., 2008, MNRAS, 387, 1253
    • Zhang Y. et al., 2016, ApJ, 816, 98
    • Zhao D., Arago´n-Salamanca A., Conselice C. J., 2015a, MNRAS, 448, 2530
    • Zhao D., Arago´n-Salamanca A., Conselice C. J., 2015b, MNRAS, 453, 4444
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article