LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pensini, E; Harbottle, D; Yang, F; Tchoukov, P; Li, Z; Kailey, I; Behles, J; Masliyah, J; Xu, Z (2014)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
The demulsification mechanism of asphaltene-stabilized water-in-toluene emulsions by an ethylene-oxide-propylene oxide (EO-PO) based polymeric demulsifier was studied. Demulsification efficiency was determined by bottle tests and correlated to the physicochemical properties of asphaltene interfacial films after demulsifier addition. From bottle tests and droplet coalescence experiments, the demulsifier showed an optimal performance at 2.3 ppm (mass basis) in toluene. At high concentrations, the demulsification performance deteriorated due to the intrinsic stabilizing capacity of the demulsifier, which was attributed to steric repulsion between water droplets. Addition of demulsifier was shown to soften the asphaltene film (i.e., reduce the viscoelastic moduli of asphaltene films) under both shear and compressional interfacial deformations. Study of the macrostructures and the chemical composition of asphaltene film at the toluene-water interface after demulsifier addition demonstrated gradual penetration of the demulsifier into the asphaltene film. Demulsifier penetration in the asphaltene film changed the asphaltene interfacial mobility and morphology, as probed with Brewster angle and atomic force microscopy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Kupai, M. M.; Yang, F.; Harbottle, D.; Moran, K.; Masliyah, J.; Xu, Z., Characterising rag-forming solids. Can. J. Chem. Eng. 2013, 91, (8), 1395 1401.
    • 2. McLean, J. D.; Kilpatrick, P. K., Effects of Asphaltene Solvency on Stability of Waterin-Crude-Oil Emulsions. J. Colloid Interface Sci. 1997, 189, (2), 242-253.
    • 3. Yan, Z.; Elliott, J. A. W.; Masliyah, J. H., Roles of various bitumen components in the stability of water-in-diluted-bitumen emulsions. J. Colloid Interface Sci. 1999, 220, (2), 329 337.
    • 4. Tchoukov, P.; Czarnecki, J.; Dabros, T., Study of water-in-oil thin liquid films: Implications for the stability of petroleum emulsions. Colloids Surf., A 2010, 372 (1-3), 15 21.
    • 5. Czarnecki, J.; Tchoukov, P.; Dabros, T., Possible Role of Asphaltenes in the Stabilization of Water-in-Crude Oil Emulsions. Energy Fuels 2012, 26, (9), 5782 5786.
    • 6. Tchoukov, P.; Yang, F.; Xu, Z.; Dabros, T.; Czarnecki, J.; Sjöblom, J., Role of Asphaltenes in Stabilizing Thin Liquid Emulsion Films. Langmuir 2014, 30, (11), 3024 3033.
    • 7. Feng, X.; Xu, Z.; Masliyah, J., Biodegradable polymer for demulsification of water-inbitumen emulsions. Energy & Fuels 2009, 23, (1), 451-456.
    • 8. Robins, M. M.; Watson, A. D.; Wilde, P. J., Emulsions - creaming and rheology. Curr. Opin. Colloid Interface Sci. 2002, 7, (5-6), 419-425.
    • dewatering. Can. J. Chem. Eng. 2007, 85, (5), 748-755.
    • 10. Hou, J.; Feng, X.; Masliyah, J.; Xu, Z., Understanding Interfacial Behavior of Ethylcellulose at the Water Diluted Bitumen Interface. Energy Fuels 2012, 26, (3), 1740 1745.
    • 11. Fan, Y.; Simon, S.; Sjoblom, J., Chemical Destabilization of Crude Oil Emulsions: Effect of Nonionic Surfactants as Emulsion Inhibitors. Energy Fuels 2009, 23, (9), 4575 4583.
    • 12. Ese, M.-H.; Sjoblom, J.; Djuve, J.; Pugh, R., An atomic force microscopy study of asphaltenes on mica surfaces. Influence of added resins and demulsifers. Colloid Polym. Sci. 2000, 278, (6), 532-538.
    • 13. Fan, Y.; Simon, S.; Sjöblom, J., Interfacial shear rheology of asphaltenes at oil water interface and its relation to emulsion stability: Influence of concentration, solvent aromaticity and nonionic surfactant. Colloids Surf., A 2010, 366, (1-3), 120 128.
    • 14. Young H., K.; Wasan, D. T., Effect of demulsifier partitioning on the destabilization of water-in-oil emulsions. Ind. Eng. Chem. Res. 1996, 35, (4), 1141-1149.
    • 15. Feng, X.; Wang, S.; Hou, J.; Wang, L.; Cepuch, C.; Masliyah, J.; Xu, Z., Effect of Hydroxyl Content and Molecular Weight of Biodegradable Ethylcellulose on Demulsification of Water-in-Diluted Bitumen Emulsions. Ind. Eng. Chem. Res. 2011, 50, (10), 6347 6354.
    • 16. Erni, P.; Windhab, E. J.; Gunde, R.; Graber, M.; Pfister, B.; Parker, A.; Fischer, P., Interfacial rheology of surface-active biopolymers: acacia senegal gum versus hydrophobically modifed starch. Biomacromolecules 2007 2007, 8, (11), 3458-3466.
    • 17. Dickinson, E., Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf., B 2001, 20, (3), 197 210.
    • 18. Erni, P., Deformation modes of complex fluid interfaces. Soft Matter 2011, 7, 7586-7600.
    • 19. Angle, C. W.; Hua, Y., Dilational interfacial rheology for increasingly deasphalted bitumens and n-C5 asphaltenes in toluene/NaHCO3 solution. Energy & Fuels 2012, 26, (10), 6228 6239.
    • 20. Mohammed, R. A.; Bailey, A. I.; Luckham, P. F.; Taylor, S. E., The effect of demulsifiers on the interfacial rheology and emulsion stability of water-in-crude oil emulsions. Colloids Surf., A 1994, 91, (3), 129 139.
    • 21. Sun, H.-Q.; Zhang, L.; Li, Z.-Q.; Zhang, L.; Luo, L.; Zhao, S., Interfacial dilational rheology related to enhance oil recovery. Soft Matter 2011, 7, 7601-7611.
    • 22. Ekott, E. J.; Akpabio, E. J., A Review of water-in-crude oil emulsion stability, destabilization and interfacial rheology. J. Eng. Appl. Sci. 2010, 5, (6), 447-452.
    • 23. Feng, X.; Wang, S.; Hou, J.; Wang, L.; Cepuch, C.; Masliyah, J.; Xu, Z., Effect of Hydroxyl Content and Molecular Weight of Biodegradable Ethylcellulose on Demulsification of Water-in-Diluted Bitumen Emulsions. Industrial and Engineering Chemistry Research 2011, 50, (10), 6347 6354.
    • 24. Wu, J.; Xu, Y.; Dabros, T.; Hamza, H., Effect of Demulsifier Properties on Destabilization of Water-in-Oil Emulsion. Energy Fuels 2003, 17, (6), 1554-1559.
    • 25. Zaki, N.; Abdel-Raouf, M. E.; Abdci-Azim, A.-A. A., Propylene Oxide-Ethylene Oxide Block Copolymers as Demulsifiers for Water-in-Oil Emulsions, II. Effects of Temperature, Salinity, pH-Value, and Solvents on the Demulsification Efficiency. Monatshefte fiir Chemie 1996, 127, (12), 1239-1245.
    • 26. Wu, J.; Xu, Y.; Dabros, T.; Hamza, H., Effect of EO and PO positions in nonionic surfactants on surfactant properties and demulsification performance. Colloids Surf., A 2005, 252, (1), 79 85.
    • 27. Xu, Y.; Wu, J.; Dabros, T.; Hamza, H., Optimizing the Polyethylene Oxide and Polypropylene Oxide Contents in Diethylenetriamine-Based Surfactants for Destabilization of a Water-in-Oil Emulsion. Energy & Fuels 2005, 19, (3), 916-921.
    • 28. Ramalho, J. B.; Ramos, N.; Lucas, E., The influence of some interfacial properties of PEO-b-PPO copolymers on dewatering of water-in-oil asphaltene model emulsions Chem. Chem. Technol. 2009, 3, 53-58.
    • 29. Abdel-Azim, A.; Zaki, N.; Maysour, N. E. S., Polyoxyalkylenated Amines for Breaking Water-in-Oil Emulsions: Effect of Structural Variations on the Demulsification Efficiency. Polym. Adv. Technol. 1998, 9, (2), 159-166.
    • 30. Angle, C. W.; Dabros, T.; Hamza, H. A., Demulsifier effectiveness in treating heavy oil emulsion in the presence of fine sands in the production fluids. Energy & Fuels 2007, 21, (2), 912-919.
    • 31. Feng, X.; Mussone, P.; Gao, S.; Wang, S.; Wu, S.-Y.; Masliyah, J. H.; Xu, Z., Mechanistic study on demulsification of water-in-diluted bitumen emulsions by ethylcellulose. Langmuir 2009, 26, (5), 3050 3057.
    • 32. Kailey, I. K.; Behles, J.; Blackwell, C., Collaborative interactions between EO-PO copolymers upon mixing. Ind. Eng. Chem. Res. 2013.
    • 33. Mohammed, R. A.; Bailey, A. I.; Luckham, P. F.; Taylor, S. E., Dewatering of crude oil emulsions 3 . Emulsion resolution by chemical means. Colloids Surf., A 1994, 83, (3), 261-271.
    • 34. Zhang, Z.; Xu, G.; Wang, F.; Dong, S.; Chen, Y., Demulsification by amphiphilic dendrimer copolymers. J. Colloid Interface Sci. 2005, 282, (1), 1-4.
    • 35. Aveyard, R.; Binks, B. P.; Fletcher, P. D. I.; Lu, J. R., The resolution of water-in-crude oil emulsions by the addition of low molar mass demulsifiers. Journal of Colloid and Interface Science 1990, 139, (1), 128-138.
    • 36. Ramakers, R. R. M.; Pöpel, H. J.; Koops, W., A new method for handling oil spill materials. Oil and Petrochemical Pollution 1982, 1, (2), 129 137.
    • 37. Stewart, A. C.; EI-Hamouz, A. M.; Davies, G. A., Effect of chemical additives on the stability of kerosene-water dispersions. J. Dispersion Sci. Technol. 1996, 17, (6), 675-696.
    • 38. Dimitrov, A. N.; Yordanov, D. I.; Petkov, P. S., Study on the effect of demulsifers on crude oil and petroleum products. Int. J. Environ. Res. 2012, 6, (2), 435-442.
    • 39. Mohammed, R. A.; Bailey, A. I.; Luckham, P. F.; Taylor, S. E., Emulsion resolution by chemical means. Colloids Surf., A 1994, 83, (3), 261-271.
    • 54. Ferri, J. K.; Gorevski, N.; Kotsmar, C.; Leser, M. E.; Miller, R., Desorption kinetics of surfactants at fluid interfaces by novel coaxial capillary pendant drop experiments. Colloids Surf., A 2008, 319, (1-3), 13-20.
    • 55. Zhang, L. Y.; Lopetinsky, R.; Xu, Z.; Masliyah, J. H., Asphaltene Monolayers at a Toluene/Water Interface. Energy Fuels 2005, 19, (4), 1330-1336.
    • 56. Zhang, H., Xu, G., Wu, D., Wang, S. , Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface: interfacial rheological behavior study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 317, (1), 289-296.
    • 57. Zhang, L. Y.; Xu, Z.; Masliyah, J. H., Langmuir and Langmuir-Blodgett Films of Mixed Asphaltene and a Demulsifier. Langmuir 2003, 19, (23), 9730-9741.
    • 58. Spiecker, P. M.; Kilpatrick, P. K., Interfacial rheology of petroleum asphaltenes at the oil-water interface. Langmuir 2004, 20, (10), 4022-4032.
    • 59. Yang, X.; Verruto, V. J.; Kilpatrick, P. K., Dynamic asphaltene-resin exchange at the oil/water interface: Time-dependent W/O emulsion stability for asphaltene/resin model oils. Energy & fuels 2007, 21, (3), 1343-1349.
    • 60. Álvarez, L.; Díaz, M. E.; Montes, F. J.; Galán, M. A., Langmuir technique and Brewster angle microscope studies of the interfacial behavior of bitumen, asphaltenes and maltenes at the air water interface. I. Effect of different spreading solution volumes. Fuel 2010, 89, (3), 691 702.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok