LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Peters, Gretchen Marie; Skala, Luke P.; Plank, Taylor N.; Oh, Hyuntaek; Reddy, G. N. Manjunatha; Marsh, Andrew; Brown, Steven P.; Raghavan, Srinivasa R.; Davis, Jeffery T. (2015)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD
The ability to modulate the physical properties of a supramolecular hydrogel may be beneficial for biomaterial and biomedical applications. We find that guanosine (G 1), when combined with 0.5 equiv of potassium borate, forms a strong, self-supporting hydrogel with elastic moduli >10 kPa. The countercation in the borate salt (MB(OH)4) significantly alters the physical properties of the hydrogel. The gelator combination of G 1 and KB(OH)4 formed the strongest hydrogel, while the weakest system was obtained with LiB(OH)4, as judged by 1H NMR and rheology. Data from powder XRD, 1H double-quantum solid-state magic-angle spinning (MAS) NMR and small-angle neutron scattering (SANS) were consistent with a structural model that involves formation of borate dimers and G4·K+ quartets by G 1 and KB(OH)4. Stacking of these G4·M+ quartets into G4-nanowires gives a hydrogel. We found that the M+ cation helps stabilize the anionic guanosine-borate (GB) diesters, as well as the G4-quartets. Supplementing the standard gelator mixture of G 1 and 0.5 equiv of KB(OH)4 with additional KCl or KNO3 increased the strength of the hydrogel. We found that thioflavin T fluoresces in the presence of G4·M+ precursor structures. This fluorescence response for thioflavin T was the greatest for the K+ GB system, presumably due to the enhanced interaction of the dye with the more stable G4·K+ quartets. The fluorescence of thioflavin T increased as a function of gelator concentration with an increase that correlated with the system’s gel point, as measured by solution viscosity\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) For some recent reviews on the development and characterization of supramolecular hydrogels, see: (a) Weiss, R. G. J. Am. Chem.
    • Soc. 2014, 136, 7519−7530. (b) Raeburn, J.; Adams, D. J. Chem.
    • Commun. 2014, 51, 5170−5180. (c) Cornwell, D. J.; Smith, D. K.
    • Mater. Horiz. 2015, DOI: 10.1039/C4MH00245H. (d) Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Chem. Rev. 2014, 114, 1973−2129.
    • (e) Estroff, L. A.; Hamilton, A. D. Chem. Soc. Rev. 2004, 104, 1201− 1216. (f) Yu, G.; Yan, X.; Han, C.; Huang, F. Chem. Soc. Rev. 2013, 42, 6697−6722. (g) Buerkle, L. E.; Rowan, S. J. Chem. Soc. Rev. 2012, 41, 6089−6102. (h) Steed, J. W. Chem. Commun. 2011, 47, 1379−1383.
    • (i) Shapiro, Y. E. Prog. Polym. Sci. 2011, 36, 1184−1253.
    • (2) (a) Caran, K. L.; Lee, D.-C.; Weiss, R. G. Molecular Gels and their Fibrillar Networks. In Soft Fibrillar Materials: Fabrication and Applications; Liu, X. Y., Li, J.-L., Eds.; Wiley-VCH Verlag GmbH & Co.
    • KGaA: Weinheim, Germany, 2013. (b) Molecular Gels: Materials with Self-Assembled Fibrillar Networks; Weiss, R. G., Terech, P., Eds.; Springer: Dordrecht, The Netherlands, 2006. (c) Raghavan, S. R.; Douglas, J. F. Soft Matter 2012, 8, 8539−8546.
    • (3) Ikeda, M.; Tanida, T.; Yoshii, T.; Kurotani, K.; Onogi, S.; Urayama, K.; Hamachi, I. Nat. Chem. 2014, 6, 511−518.
    • (4) Guo, M.; Pitet, L. M.; Wyss, H. M.; Vos, M.; Dankers, P. Y. W.; Meijer, E. W. J. Am. Chem. Soc. 2014, 136, 6969−6977.
    • (5) Guo, W.; Lu, C.-H.; Qi, X.-J.; Orbach, R.; Fadeev, M.; Yang, H.- H.; Willner, I. Angew. Chem., Int. Ed. 2014, 53, 10134−10138.
    • (6) Yoshii, T.; Ikeda, M.; Hamachi, I. Angew. Chem., Int. Ed. 2014, 53, 7264−7267.
    • (7) Yang, Z.; Liang, G.; Xu, B. Acc. Chem. Res. 2008, 41, 315−326.
    • (8) Ghoussoub, A.; Lehn, J.-M. Chem. Commun. 2005, 46, 5763− 5765.
    • (9) Yoshii, T.; Onogi, S.; Shigemitsu, H.; Hamachi, I. J. Am. Chem.
    • Soc. 2015, 137, 3360−3365.
    • (10) Liu, G.-F.; Zhang, D.; Feng, C.-L. Angew. Chem., Int. Ed. 2014, 53, 7789−7793.
    • (11) Kuang, Y.; Shi, J.; Li, J.; Alberti, K. A.; Xu, Q.; Xu, B. Angew.
    • Chem., Int. Ed. 2014, 53, 8104−8107.
    • (12) Buerkle, L. E.; von Recum, H. A.; Rowan, S. J. Chem. Sci. 2012, 3, 564−572.
    • (13) Ikeda, M.; Yoshii, T.; Matsui, T.; Tanida, T.; Komatsu, H.; Hamachi, I. J. Am. Chem. Soc. 2011, 133, 1670−1673.
    • (14) For some recent reviews on applications of supramolecular hydrogels, see: (a) Lau, H. K.; Kiick, K. L. Biomacromolecules 2015, 16, 28−42. (b) Skilling, K. J.; Citossi, F.; Bradshaw, T. D.; Ashford, M.; Kellam, B.; Marlow, M. Soft Matter 2014, 10, 237−256. (c) Hirst, A.
    • 2008, 47, 8002−8018. (d) Sangeetha, N. M.; Maitra, U. Chem. Soc.
    • Rev. 2005, 34, 821−836.
    • (15) Du, X.; Zhou, J.; Xu, B. Chem.Asian J. 2014, 9, 1446−1472.
    • (16) Araki, K.; Yoshikawa, I. Top. Curr. Chem. 2005, 256, 133−165.
    • (17) (a) Bang, I. Biochem. Z. 1910, 26, 293−311. (b) Gellert, M.; Lipsett, M. N.; Davies, D. R. Proc. Natl. Acad. Sci. U. S. A. 1962, 48, 2013−2018. (c) Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 669−698.
    • (18) Chantot, J.-F.; Guschlbauer, W. FEBS Lett. 1969, 4, 173−176.
    • (19) Sreenivasachary, N.; Lehn, J.-M. Proc. Natl. Acad. Sci. U. S. A.
    • (20) Kawn, I. C. M.; Delley, R. J.; Hodgson, D. R. W.; Wu, G. Chem.
    • Commun. 2011, 47, 3882−3884.
    • (21) Yu, Y.; Nakamura, D.; DeBoyace, K.; Neisius, A. W.; McGown, L. B. J. Phys. Chem. B 2008, 112, 1130−1134.
    • (22) Buerkle, L. E.; Li, Z.; Jamieson, A. M.; Rowan, S. J. Langmuir 2009, 25, 8833−8840.
    • (23) Li, Z.; Buerkle, L. E.; Orseno, M. R.; Streletzky, K. A.; Seifert, S.; Jamieson, A. M.; Rowan, S. J. Langmuir 2010, 26, 10093−10101.
    • (24) Way, A. E.; Korpusik, A. B.; Dorsey, T. B.; Buerkle, L. E.; von Recum, H.; Rowan, S. J. Macromolecules 2014, 47, 1810−1818.
    • (25) Okano, T.; Komatsu, T.; Nara, T.; Tsuji, K. Yakugaku Zasshi 1970, 90, 1542−1548.
    • (26) Peters, G. M.; Skala, L. P.; Plank, T. N.; Hyman, B. J.; Reddy, G.
    • N. M.; Marsh, A.; Brown, S. P.; Davis, J. T. J. Am. Chem. Soc. 2014, 136, 12596−12599.
    • (27) Das, R. N.; Kumar, Y. P.; Pagoti, S.; Patil, A. J.; Dash, J. Chem. Eur. J. 2012, 18, 6008−6014.
    • (28) Adhikari, B.; Shah, A.; Kraatz, H.-B. J. Mater. Chem. B 2014, 2, 4802−4810.
    • (29) Das, J.; Patil, A. J.; Das, R. N.; Dowdall, F. L.; Mann, S. Soft Matter 2011, 7, 8120−8126.
    • (30) Dowling, V. A.; Charles, J. A. M.; Nwakpuda, E.; McGowan, L.
    • B. Anal. Chem. 2004, 76, 4558−4563.
    • (31) Case, W. S.; Glinert, K. D.; LaBarge, S.; McGowan, L. B.
    • Electrophoresis 2007, 28, 3008−3016.
    • (32) Zhang, X.; McGown, L. B. Electrophoresis 2013, 34, 1778−1786.
    • (33) Buchs, B.; Fieber, W.; Vigouroux-Elie, F.; Sreenivasachary, N.; Lehn, J.-M.; Herrmann, A. Org. Biomol. Chem. 2011, 9, 2906−2919.
    • (34) Sreenivasachary, N.; Lehn, J.-M. Chem.Asian J. 2008, 3, 134− 139.
    • (35) Meng, L.; Liu, K.; Mao, Y.; Yi, T. Org. Biomol. Chem. 2013, 11, 1525−1532.
    • (36) Yoshikawa, I.; Yanagi, S.; Yamaji, Y.; Araki, K. Tetrahedron 2007, 63, 7474−7481.
    • (37) Simeone, L.; Milano, D.; De Napoli, L.; Irace, C.; Di Pascale, A.; Boccalon, M.; Tecilla, P.; Montesarchio, D. Chem.Eur. J. 2011, 17, 13854−13865.
    • (38) Arnal-Heŕault, C.; Pasc, A.; Michau, M.; Cot, D.; Petit, E.; Barboiu, M. Angew. Chem., Int. Ed. 2007, 46, 8409−8413.
    • (39) The G4-quartet and relatives form assemblies with unique properties: (a) Sessler, J. L.; Lawrence, C. M.; Jayawickramarajah, J.
    • Chem. Soc. Rev. 2007, 36, 314−325. (b) Arnal-Heŕault, C.; Banu, A.; Barboiu, M.; Michau, M.; van der Lee, A. Angew. Chem., Int. Ed. 2007, 46, 4268−4272. (c) García-Arriaga, M.; Hobley, G.; Rivera, J. R. J. Am.
    • Chem. Soc. 2008, 130, 10492−10493. (d) Ciesielski, A.; Lena, S.; Masiero, S.; Spada, G. P.; Samorì, P. Angew. Chem., Int. Ed. Engl. 2010, 49, 1963−1966. (e) Cafferty, B. J.; Gallego, I.; Chen, M. C.; Farley, K.
    • I.; Eritja, R.; Hud, N. V. J. Am. Chem. Soc. 2013, 135, 2447−2450.
    • (f) Mihai, S.; Le Duc, Y.; Cot, D.; Barboiu, M. J. Mater. Chem. 2010, 20, 9443−9448. (g) Mihai, S.; Cazacu, A.; Arnal-Heŕault, C.; Nasr, G.; Meffre, A.; van der Lee, A.; Barboiu, M. New J. Chem. 2009, 33, 2355− 2343.
    • (40) Schott, H. Angew. Chem., Int. Ed. Engl. 1972, 11, 824−825.
    • (41) Ricardo, A.; Carrigan, M. A.; Olcott, A. N.; Benner, S. A. Science 2004, 303, 196.
    • (42) Kim, H.-J.; Ricardo, A.; Illangkoon, H. I.; Kim, M. J.; Carrigan, M. A.; Frye, F.; Benner, S. A. J. Am. Chem. Soc. 2011, 133, 9457−9468.
    • (43) Wada, T.; Minamimoto, N.; Inaki, Y.; Inoue, Y. J. Am. Chem.
    • Soc. 2000, 122, 6900−6910.
    • (44) Brown, S. P. Solid State Nucl. Magn. Reson. 2012, 41, 1−27.
    • (45) Brown, S. P. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 199− 251.
    • (46) Webber, A. L.; Masiero, S.; Pieraccini, S.; Burley, J. C.; Tatton, A. S.; Iuga, D.; Pham, T. N.; Spada, G. P.; Brown, S. P. J. Am. Chem.
    • Soc. 2011, 133, 19777−19795.
    • (47) Peters, G. M.; Davis, J. T. Supramol. Chem. 2014, 26, 286−295.
    • (48) Benner, K.; Klufers, P. Carbohydr. Res. 2000, 327, 287−292.
    • (49) (a) Gabe, S. A.; London, R. E. J. Biol. Inorg. Chem. 2008, 13, 207−217. (b) Wada, T.; Sato, H.; Inoue, Y. Biopolymers 2004, 76, 15− 20.
    • (50) Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P. I.; Bhasikuttan, A. C. J. Am. Chem. Soc. 2013, 135, 367−376.
    • (51) de la Faverie, A. R.; Gued́in, A.; Bedrat, A.; Yatsunyk, L. A.; Mergny, J.-L. Nucleic Acids Res. 2014, 42, 1−8.
    • (52) Zhao, D.; Dong, X.; Jiang, N.; Zhang, D.; Liu, C. Nucleic Acids Res. 2014, 42, 11612−11621.
    • (53) Bhasikuttan, A. C.; Mohanty, J. Chem. Commun. 2015, DOI: 10.1039/C4CC10030A.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | Switchable & Biomimeti...

Cite this article