LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kennedy, Daniel; Parker, Tess; Woollings, Tim; Harvey, Ben; Shaffrey, Len (2016)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:
Mid-latitude weather and climate are dominated by the jet streams and associated eastward-moving storm systems. Occasionally, however, these are blocked by persistent anticyclonic regimes known as blocking. Climate models generally predict a small decline in blocking frequency under anthropogenic climate change. However, confidence in these predictions is undermined by, among other things, a lack of understanding of the physical mechanisms underlying the change. Here we analyze blocking (mostly in the Euro-Atlantic sector) in a set of sensitivity experiments to determine the effect of different parts of the surface global warming pattern. We also analyze projected changes in the impacts of blocking such as temperature extremes. The results show that enhanced warming both in the tropics and over the Arctic act to strengthen the projected decline in blocking. The tropical changes are more important for the uncertainty in projected blocking changes, though the Arctic also affects the temperature anomalies during blocking.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anstey, J. A., P. Davini, L. J. Gray, T. J. Woollings, N. Butchart, C. Cagnazzo, B. Christiansen, S. C. Hardiman, S. M. Osprey, and S. Yang (2013), Multi-model analysis of Northern Hemisphere winter blocking. Part II: Future projections, J. Geophys. Res. Atmos., 118, 3956-3971, doi:10.1002/jgrd.50231.
    • Barnes, E. A., and L. Polvani (2013), Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models, J. Clim., 26, 7117-7135, doi:10.1175/CLDI-D-12-00536.1.
    • Barnes, E. A., and L. M. Polvani (2015), CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship, J. Clim., 28, 5254-5271, doi:10.1175/JCLI-D-14-00589.1.
    • Barnes, E. A., and J. A. Screen (2015), The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, WIREs Clim. Change, 6, 277-286, doi:10.1002/wcc.337.
    • Barnes, E. A., J. Slingo, and T. Woollings (2011), A methodology for the comparison of blocking climatologies across indices, models and climate scenarios, Clim. Dyn., 38, 2467-2481, doi:10.1007/s00382-011-1243-6.
    • Berckmans, J., T. Woollings, M. E. Demory, P. L. Vidale, and M. Roberts (2013), Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing, Atmos. Sci. Lett., 14(1), 34-40, doi:10.1002/asl2.412.
    • Brayshaw, D. J., B. Hoskins, and M. Blackburn (2011), The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures, J. Atmos. Sci., 68, 1784-1805, doi:10.1175/2011JAS3674.1.
    • Butler, A. H., D. W. J. Thompson, and R. Heikes (2010), The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model, J. Clim., 23, 3474-3496, doi:10.1175/2010JCLI3228.1.
    • Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron (2010), Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, L20794, doi:10.1029/2010GL044613.
    • Davini, P., C. Cagnazzo, R. Neale, and J. Tribbia (2012), Coupling between Greenland blocking and the North Atlantic Oscillation pattern, Geophys. Res. Lett., 39, L14701, doi:10.1029/2012GL052315.
    • Deser, C., J. E. Walsh, and M. Timlin (2000), Arctic sea ice variability in the context of recent atmospheric circulation trends, J. Clim, 13, 617-633, doi:10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.
    • Deser, C., L. Sun, R. A. Tomas, and J. Screen (2016), Does ocean coupling matter for the northern extra-tropical response to projected Arctic sea ice loss?, Geophys. Res. Lett., 43, 2149-2157, doi:10.1002/2016GL067792.
    • de Vries, H., T. Woollings, J. Anstey, R. J. Haarsma, and W. Hazeleger (2013), Atmospheric blocking and its relation to jet changes in future climate, Clim. Dyn., 41, 2643-2654, doi:10.1007/s00382-013-1699-7.
    • Dole, R., M. Hoerling, J. Perlwitz, J. Eischeid, P. Pegion, T. Zhang, X.-W. Quan, T. Xu, and D. Murray (2011), Was there a basis for anticipating the 2010 Russian heat wave?, Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.
    • Dunn-Sigouin, E., and S.-W. Son (2013), Northern Hemisphere blocking frequency and duration in the CMIP5 models, J. Geophys. Res. Atmos., 118, 1179-1188, doi:10.1002/jgrd.50143.
    • Francis, J. A., and S. J. Vavrus (2012), Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.
    • Harvey, B., L. Shaffrey, and T. Woollings (2013), Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models, Clim. Dyn., 43(5-6), 1171-1182, doi:10.1007/s00382-013-1883-9.
    • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings (2015), Deconstructing the climate change response of Northern Hemisphere winter storm tracks, Clim. Dyn., 45, 2847-2860, doi:10.1007/s00382-015-2510-8.
    • Hassanzadeh, P., and Z. Kuang (2015), Blocking variability: Arctic Amplification versus Arctic Oscillation, Geophys. Res. Lett., 42, 8586-8595, doi:10.1002/2015GL065923.
    • Hassanzadeh, P., Z. Kuang, and B. F. Farrell (2014), Responses of midlatitude blocks and wave amplitude changes in the meridional temperature gradient in an idealized dry GCM, Geophys. Res. Lett., 41, 5223-5232, doi:10.1002/2014GL060674.
    • Held, I. M. (1993), Large-scale dynamics and global warming, Bull. Am. Meteorol. Soc., 74(2), 228-241.
    • Holmes, C. R., T. Woollings, E. Hawkins, and H. de Vries (2015), Robust future changes in temperature variability under greenhouse gas forcing and the relationship with thermal advection, J. Clim., 29, 2221-2236, doi:10.1175/JCLI-D-14-00735.1.
    • Johns, T. C., et al. (2006), The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations, J. Clim., 19, 1327-135, doi:10.1175/JCLI3712.1.
    • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton (2012), Impact of declining Arctic sea ice on winter snowfall, Proc. Natl. Acad. Sci. U. S. A., 109(11), 4074-4079.
    • Magnusdottir, G., C. Deser, and R. Saravanan (2004), The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response, J. Clim., 17, 857-876, doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.
    • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton (2006), The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology, J. Clim., 19, 1274-1301, doi:10.1175/JCLI3636.1.
    • Masato, G., B. J. Hoskins, and T. Woollings (2013), Winter and summer Northern Hemisphere blocking in CMIP5 models, J. Clim., 26, 7044-7059, doi:10.1175/JCLI-D-12-00466.1.
    • Masato, G., T. Woollings, and B. J. Hoskins (2014), Structure and impact of atmospheric blocking over the Euro-Atlantic region in present-day and future simulations, Geophys. Res. Lett., 41, 1051-1058, doi:10.1002/2013GL058570.
    • Matsueda, M. (2009), Blocking predictability in operational medium-range ensemble forecasts, SOLA, 5, 113-116, doi:10.2151/sola.2009-029.
    • Matsueda, M. (2010), Predictability of Euro-Russian blocking in summer of 2010, Geophys. Res. Lett., 38, L06801, doi:10.1029/2010GL046557.
    • Matsueda, M., R. Mizuta, and S. Kusunoki (2009), Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model, J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919.
    • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto (2014), Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades, Nat. Geosci., 7, 869-873, doi:10.1038/ngeo2277.
    • Pelly, J. L., and B. J. Hoskins (2003), A new perspective on blocking, J. Atmos. Sci., 60, 743-755, doi:10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.
    • Pfahl, S., and H. Wernli (2012), Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales, Geophys. Res. Lett., 39, L12807, doi:10.1029/2012GL052261.
    • Rex, D. F. (1950), Blocking action in the middle troposphere and its effect upon regional climate, Tellus, 2, 196-211, doi:10.1111/j.2153-3490.1950.tb00331.x.
    • Scaife, A. A., T. Woollings, J. Knight, G. Martin, and T. Hinton (2010), Atmospheric blocking and mean biases in climate models, J. Clim., 23, 6143-6152, doi:10.1175/2010JCLI3728.1.
    • Scherrer, S. C., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller (2005), Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region, Int. J. Climatol., 26, 233-249, doi:10.1002/joc.1250.
    • Shepherd, T. G. (2015), Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7, 703-708, doi:10.1038/ngeo2253.
    • Sillmann, J., and M. Croci-Maspoli (2009), Euro-Atlantic blocking and extreme events in present and future climate simulations, Geophys. Res. Lett., 36, L10702, doi:10.1029/2009GL038249.
    • Tibaldi, S., and F. Molteni (1990), On the operational predictability of blocking, Tellus A, 42, 343-365.
    • Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim (2012), Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012), Mon. Weather Rev., 143, 132-152, doi:10.1175/MWR-D-14-00086.
    • Wilson, C., B. Sinha, and R. G. Williams (2009), The effect of ocean dynamics and orography on atmospheric storm tracks, J. Clim., 22, 3689-3702, doi:10.1175/2009JCLI2651.1.
    • Woollings, T. (2010), Dynamical influences on European climate: An uncertain future, Philos. Trans. R. Soc. A, 368, 3733-3756, doi:10.1098/rsta.2010.0040.
    • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford (2008), A new Rossby wave-breaking interpretation of the North Atlantic Oscillation, J. Atmos. Sci., 65, 609-626, doi:10.1175/2007JAS2347.1.
    • Woollings, T., B. Harvey, and G. Masato (2015), Arctic warming, atmospheric blocking and cold European winters in CMIP5 models, Environ. Res. Lett., 9, 014002, doi:10.1088/1748-9326/9/1/014002.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    43
    43%
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok