LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: QB

Classified by OpenAIRE into

arxiv: Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Instrumentation and Methods for Astrophysics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::High Energy Astrophysical Phenomena
We report on new millimetric continuum observations of the Large Magellanic Cloud (LMC) made from the Italian Base in Antarctica with a 2.6 metre diameter telescope. The telescope scanned two strips at constant declinations -69deg and -69.16deg across the entire source with an angular resolution of 5 arcminutes. The comparison of the mm wavelength observations with radio, CO and FIR measurements suggests that most of the observed mm emission is thermal and can be associated with very cold dust present in the molecular clouds of this Galaxy. The dust properties inferred from these observations are briefly discussed.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article