LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: TK, QC
Identifiers:doi:10.1063/1.104076
We report on the properties of p-type delta-doped layers prepared in molecular beam epitaxy-Si by growth interruption and evaporation of elemental B. Secondary-ion mass spectrometry measurements at several primary ion energies have been used to show that the full width at half maximum is ~2 nm. Hall measurements confirm that the layers are completely activated at 300 K with a mobility of 30±5 cm2/V s for a carrier density of (9±2)×1012 cm−2. At temperatures below 70 K nonmetallic behavior is observed which we have attributed to conduction between impurity states. It is concluded that the critical acceptor separation for the Mott metal-insulator transition in this system is significantly less than the value found in uniformly doped Si:B.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article