Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
The work presented in this thesis describes the development and implementation of a number of ideas and methods that allow fMRI to be carried out using echo-planar imaging at ultra high field strength, despite the significant problems associated with this.\ud In the first study, EPI is used to probe how the gradient echo (GE) and spin echo (SE) BOLD responses relate to the underlying neurological processes, whilst the brain is in both its active and resting states. These finding show that SE BOLD contrast is harder to detect but less localised to areas around large draining veins than GE BOLD contrast and thus potentially more localised to sites that represent true functional areas of activation.\ud The second study describes how dynamic delta B0 mapping can be performed during fMRI experiments with a hyperoxic challenge in order to assess the magnitude and extent of delta B0 effects that arise due to susceptibility differences between air and tissue. Developing on this, this work describes the steps involved in the design and implementation of a dual echo GE/SE EPI sequence and how it can be used to enable off-resonance effects, such as image distortion and signal concentration/dilution, to be corrected on a dynamic basis for, simultaneously acquired, GE and SE data.\ud The final study demonstrates how such a sequence can be used to detect resting state networks. Showing that the correspondingly low temporal separation of the GE and SE data allows GE and SE BOLD contrast mechanisms to be compared in a number of novels ways in different resting state networks.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bloch. F. (1946). '~uclear Induction (Bloch 1946)" Physical Review 70(7 and 8).
    • Blockle~·. ~. P., Driver. I. D., Fisher, J. a., Francis, S. T. & Gowland, P. a. (2012). '~Ieasuring venous blood volume changes during activation using hyperoxia. '. NeuroImage 59(4), 3266-74.
    • Bluhm. R, \\'illiamson. P., Lanius, R, Theberge, J., Densmore. M., Bartha, R. ~eufeld. R &. Osuch, E. (2009), 'Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus.', Psychiatry and clinical neurosciences 63(6). 754-61.
    • Boxerman. J. L.. Bandettini, P. a., Kwong, K. K, Baker, J. R, Davis, T. L., Rosen, B. R. &. \Veisskoff, R. ~L (1995), 'The intravascular contribution to niRI signal change: ~lonte Carlo modeling and diffusion-weighted studies in vivo.'. Magnetic Resonance in Medicine 34(1). 4 10.
    • Buckner. R L.. Andrews-Hanna, J. R & Schacter, D. L. (2008), 'Ttl(' brain's default network: anatomy. function, and relevance to disease.', Annals of the New York Academy of Sciences 1124, 1-38.
    • Buckner. R L.. Bandettini. P. A., O'Craven, K M., Savoy. R. L., P(~t('rsen, S. E .. Raichle, ~I. E. & Rosen, B. R. (1996), 'Detection of ('ortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging.'. Proceedings of the National AcadeTnU of Sciences of the United States of America 93(25), 1487814883.
    • Bulte. 0 .. Chiarelli. P.. Wise. R & Jezzard, P. (2007), '~IeasurenH'nt of Cpwbral Blood Volume in Humans Using Hyperoxie MRI Contrast', Joumal of Magnetic Resonance Imaging L 894-899.
    • Buonocore. ~I. H. &. Zhu. D. C. (2001). 'Image-based ghost correction for interleaved EPI.'. Magnetic resonance in medicine: official joumal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 45( 1), 96-108.
    • B~·dder. G. ~I. &:. Young, I. R (1985), 'MR imaging: clinical use of th(' invf'rsion recover~' sequence', J Cornput Assist Tornogr 9(4),659 675.
    • Chen. ~.-K &. Wyrwicz. A. ~l. (1999), 'CorrectioIl for EPI distortioIls llsing multi-echo gradient-echo imaging.', Magn Reson Med 41(6), 1206 1213.
    • Chiem'lli. P. A.. Buite. D. P.. \\,ise, R, Gallic-han. D. &. JE'zzard, P. (2007) . .A calibration method for quantitative BOLD nlRI bas('d OIl hyp('roxia', 37. 808-820.
    • Chiou..J.-Y., Ahn. C, B.. ~Iuftuler, L. T. & Nalcioglu, 0, (2003), 'A simple simultaneous geometric and intensity correction method for echo-planar imaging by EPI-based phase modulation,', IEEE transactions on medical imaging 22(2), 200 5.
    • Clare. S. &: Jezzard. P. (2001), 'Rapid T(I) mapping using multislice echo planar imaging.', Magnetic Resonance in Medicine 45(4).6304.
    • Cole. D. .\1.. Smith, S. 1\1. & Beckmann, C. F. (2010), 'Advances and pitfalls in the analysis and interpretation of resting-state FMRI data.', Pronti(;rs in systems neuroscience 4(April). 8.
    • Comon, P. (1994). 'Independet Component Analysis - a new concept?'. Signal Processing 36 287314 .
    • Cordes. D.. Haughton, V. M., Arfanakis, K, Carew, .1. D., Turski, P. A., .\loritz, C. H., Quigley, 1\1. A. & Meyerand, 1\1. E. (2001), 'Frequ('Ilcips contributing to functional connectivity in the cerebral cortex in "[('stingstate" data', AJNR AmJNeuroradioI22(7), 13261333.
    • Cordes. D.. Haughton. V. ~I., Arfanakis. K, \Vendt, G . .T., Turski, P. A., .\Ioritz. C. H., Quigley. 1\1. A. & Meyerand, 1\1. E. (2000), 'Mapping functionally related regions of brain with fUIlctional connectivity 1\1R imaging.'. Ajnr American Journal OJ Nellroradiology 21(9), 1636 1644.
    • Cox. D. D. &: Savoy. R. L. (2003), 'Functional magnetic resonancc imaging (f.\IRI) .. brain reading": detecting and classifying distributed patterns of f.\IRI activity in human visual cortex.', Neurolmage 19(2 Pt 1),261 270.
    • Cox. E. F. &: Gowland. P. A. (2010), 'Simultaneous quantification of T2 and T'2 using a combined gradient echo-spin echo s('qupnce at ultrahigh fidd.·. Magnetic Resonance in Medicine 64(5), 1440 1445.
    • Di Salle. F., Formisano. E., Linden, D. E., Goebel, R., Bonavita, S., Pepino, A.. Smaltino, F. & Tedeschi, G. (1999), 'Exploring brain function with magnetic resonance imaging.', European Journal of Radiology 30(2), 84 94.
    • Duong. T Q.. Yacoub, E., Adriany, G., Hu, X., Ugurbil, K. & Kim, S.-G. (2003). '~licrovascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo lliIRI with suppression of blood effects.', Magnetic Resonance in Medicine 49(6), 1019--27.
    • Duong, T. Q., Yacoub, E., Adriany, G., Hu, X., Ugurbil. K., Vaughan, J. T., ~lerkle. H. & Kim, S.-G. (2002), 'High-resolution, spin-echo BOLD, and CBF nIRI at 4 and 7 T', Magnetic Resonance in Medicine 48(4), 589 93.
    • Fox. ~l. D. & Raichle, ~I. E. (2007), 'Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.', Nature Reviews Neuroscience 8(9), 700--711.
    • Fox. ~1. D., Snyder, A. Z., Zacks, J. M. &, Raichle, M. E. (2(06). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses., Technical Report I, Department of Radiology, \Yashington University in St. Louis. S1. Louis, Missouri 63110. USA. foxmgnpg. wustl.edu.
    • Fox, P. T. & Raichle, M. E. (1986), 'Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.', Proceedings of the National Academy of Sciences of the United States of America 83(4), 1140 1144.
    • Friston, K. J. (1996). Statistical parametric mapping and other analys('s of functional imaging data, in A. \V. Toga & J. C. ~lazziotta, eds, 'I3rain ~Iapping The :\Iethods', Academic Press, pp. 363- 386.
    • Friston. K. .1., Josephs. 0., Rees. G. & Turner, R. (1998), 'Nonlinf'ar pventrelated responses in f1IRI'. Magnetic Resonance in Medicine 39(1),41 52.
    • Gati. J. S.. ~lenon. R. S.. Ugurbil, K. & Rutt, B. K. (1997), 'Experimental determination of the BOLD field strength dependence in veflselfl and tissue.'. Magnetic Resonance in Medicine 38(2), 296-302.
    • Goldman. R. I.. Stern, J. ~L. Engel Jr., J. & Cohen, M. S. (2002), 'Simultaneous EEG and tMRI of the alpha rhythm'. NeuroRepon 13(18), 2487 2492.
    • Gomori. J. :\1.. Holland, G. A., Grossman, R. I.. Gefter, W. B. & Lenkinski, R. E. (1988), 'Fat suppression by section-select gradient reversal on spinecho :\lR imaging. \Vork in progress.', Radiology 168(2), 493495.
    • Goutte. C.. Nielsen, F. A. & Hansen, L. K. (2000), 'Modeling the Imemodynamic response in fMRI using smooth FIR filters.', IEEE Trans Med Imaging 19(12). 1188-1201.
    • Greicius, ~1. D .. Krasnow, B., Reiss, A. L. & Menon, V. (2003), 'Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.'. Proceedings of the National Academy of Sciences of the United States of America 100(1), 253- 258.
    • Grill-Spector, K. &: Malach. R. (2001), 'fMR-adaptation: a tool for studying the functional properties of human cortical neurons.', Acta Psyrhologica 107(1-3). 293--321.
    • Harmer, J., Sanchez-Panchuelo, R. M., Bowtell, R. & Francis, S. T. (2011), 'Spatial location and strength of BOLD activation in high-spatialresolution ~lRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7T.', NMR in biomedicine (January).
    • Hutton, C.. Bork, A., Josephs, 0., Deichmann, R., Ashburner, J. &: Turner, R. (2002), .Image distortion correction in fMRI: A quantitative evaluation.', NeuroImage 16(1), 217-40.
    • Lamberton, F., Delcroix, N., Grenier, D., Mazoyer, B. & Joliot, M. (2007), 'A new EPI-based dynamic field mapping method: application to retrospective geometrical distortion corrections.', Journal of magnetic resonance imaging: JMRI 26(3), 74755.
    • Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C. & Krakow, K. (2003), 'EEG-correlated fMRI of human alpha activity', Neurolmage 19(4),1463-1476.
    • Lee, A. T., Glover, G. H. & Meyer, C. H. (1995), 'Discrimination of large venous vessels in time-course spiral blood-oxygen-leveldependent magnetic-resonance functional neuroimaging.', Magn Reson Med 33(6), 745-754.
    • Li. T.-Q., van Gelderen, P., Merkle, H., Talagala, L., Koretsky, A. P. & Duyn, J. (2006), 'Extensive heterogeneity in white matter intensity in highresolution T2*-weighted MRI of the human brain at 7.0 T.', Neuroimage 32(3), 1032-1040.
    • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. (2001), 'Neurophysiological investigation of the basis of the fMRI signar. Nature 412(6843), 150-157.
    • Lowe. ~I. J., Lurito, J. T., ~Iathews, V. P., Phillips, M. D. & Hutchins, G. D. (2000), 'Quantitative comparison of functional contrast from BOLDweighted spin-echo and gradient-echo echoplanar imaging at 1.5 Tt'sla and H2 150 PET in the whole brain.', Journal of cerebral blood ]low and metabolism: official journal of the International Society of C(Teinni Blood Flow and Metabolism 20(9), 1331-40.
    • Lowe, ~I. J., Mock, B. J. & Sorenson, J. A. (1998), Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations., Technical Report 2, Department of Medical Physics, Univprsity of \Visconsin, Madison, USA.
    • Luo. y', De Graaf, R. A., DelaBarre, L., Tannt'ls, A. & Garwood. 1\1. (2001), 'BISTRO: an outer-volume suppression method that tolerates RF fidd inhomogeneity.', Magnetic Resonance in Medicine 45(6), 1095 1102.
    • ~Ialdjian, J., Atlas, S. W. & Howard Et AI, R. S. (1996), 'Functional magnetic resonance imaging of regional brain activity in patit'nts with intracerebral arteriovenous malformations before surgical or f'uciovascular therapy', Journal Of Neurosurgery 84,477 483.
    • ~Iansfield. P. (1977). '~Iulti-planar image formation using Nl\IR spin ('("hops'. Journal of Physics C Solid State Physics 10(3), L55 L5~.
    • ~Iarchini, J. L. & Ripley, B. D. (2000), 'A new statistical approach to detecting significant activation in functional MRI.', Neumlmage 12(4), 366-80.
    • ~Iatthews, P. ~1.. Honey, G. D. & Bullmore, E. T. (2006). 'Applications of ~IRI in translational medicine and clinical practice.', Nature Reviews Neumscience 7(9),732-744.
    • ~IcRobbie. D. \V., Moore, E. A., Graves, M. J. & Prince, 1\1. R (2003), MRI fmm Picture to Proton, Cambridge University Press.
    • Oja, J. ~I., Gillen, J., Kauppinen, R. A., Kraut, M. & Van Zijl, P. C. (1999), 'Venous blood effects in spin-echo fMRI of human brain.', Magnetic Resonance in Medicine 42(4), 617-626.
    • Olman. C. a.. Van de ~loortele, P.-F., Schumacher, J. F., Guy, J. R., Uurbil, K. & Yacoub, E. (2010), 'Retinotopic mapping with spin echo BOLD at 7T.', Magnetic resonance imaging 28(9), 1258-69.
    • Peters, A. M., Brookes. lVI. J., Hoogenraad, F. G., Gowland, P. A., Francis, S. T .. ~dorris. P. G. & Bowtell, R. (2007), 'T2* measurements in human brain at 1.5,3 and 7 T.', Magnetic Resonance Imaging 25(6), 748~~753.
    • Pfeuffer, J., Van De Moortele, P.-F., Yacoub, E., Shmuel, A., Adriany, G., Andersen, P.. Merkle, H., Garwood, M., Ugurbil, K. & Hu, X. (2002), Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution., Technical Report 1, Center for ~lagnetic Resonance Research, University of l\1iuncsota Medical School, 2021 6th Street S.E., 1\Iinneapolis, Minnesota 55455, USA. .
    • Smith. S.. Jenkinson, ~L. Woolrich, M. \V.. Beckmann, C. F., Behrens, T. E. .1 .. Johansen-Berg, H., Bannister, P. R., Luca, 1\1. D., Drobnjak, I., Flitney. D. E.. Xiazy, R. K, Saunders, .1., Vickers, .1., Zhang, Y., Stefano, X. D.. Brady. .1. M. &. :\1atthews, P. M. (2004), 'Advances in functional and structural ~lR image analysis and implementation 8..., FSL.', Neuroimage 23 Suppl 1, S208-S219.
    • Smith, S. ~l.. Fox, P. T., :\'liller, K L., Glahn, D. c., Fox, P. M., Mackay, C. E.. Filippini. ~., \\'atkins, K E., Toro, R, Laird, A. R &. Beckmann, C. F. (2009), 'Correspondence of the brain's functional architecture during activation and rest.', Proceedings of the National Academy of Sciences of the United States of America 106(31), 13040-5.
    • Smith. S. &. ~ichols, T. E. (2009), 'Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence anci localisation in cluster inference.', Neuroimage 44(1),83-98.
    • Song. A. W .. \Vong, E. C., Tan, S. G. &. Hyde, .1. S. (1996), 'Diffusion weighted ~IRI at 1.5 T.' , Magnetic Resonance in Medicine 35( 2), 155 -158.
    • Stroman. P. \V.. Krause. V.. Frankenstein, U. N., l\lalisza, K. L. &. Tomanek. B. (2001). 'Spin-echo versus gradient-echo ~lRI with short echo times.', Magnetic resonance imaging 19(6), 827--31.
    • Yacoub. E.. Van De ~loortele, P.-F., Shmuel. A. & Uurbil, K (2005), 'Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans.'. Neurolmage 24(3), 738-50.
    • Yousry. T. A.. Schmid. U. D., Jassoy, A. G., Schmidt, D., Eisner, W. E., Reulen, H. J., Reiser. ~1. F. & Lis."ner, J. (1995), 'Topography of the cortical motor hand area: Prospective study with functional MR imaging and direct motor mapping at surgery', Radiology 195(1), 23-29.
    • Zcng. R .. Gatenby. J. C., Zhao, Y. & Gore, J. C. (2004), 'New approach for correcting distortions in echo planar imaging.', Magn Resort Med 52(6), 1373-1378.
    • Zhao, F .. \Vang, P., Hendrich, K, Ugurbil, K & Kim, S.-G. (2006), 'Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo ~IRI: insights into hemodynamic regulation.', Neurolrnagc 30(4), 1149-1160.
    • Zhao. F .. \Vang. P. & Kim, S.-g. (2004), 'Cortical Depth-related Functional R2 and R2 * Changes at 9 . 4 T. Biophysical Jo'Umalll, 2004 2004.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article