LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QC, QD, TP
Postpolymerization modification has become a powerful tool to create a diversity of functional materials. However, simple nucleophilic substitution reactions on halogenated monomers remains relatively unexplored. Here we report the synthesis of poly(bromoethyl acrylate) (pBEA) by reversible addition–fragmentation chain transfer (RAFT) polymerization to generate a highly reactive polymer precursor for postpolymerization nucleophilic substitution. RAFT polymerization of BEA generated well-defined homopolymers and block copolymers over a range of molecular weights. The alkylbromine-containing homopolymer and block copolymer precursors were readily substituted by a range of nucleophiles in good to excellent conversion under mild and efficient reaction conditions without the need of additional catalysts. The broad range of nucleophilic species that are compatible with this postmodification strategy enables facile synthesis of complex functionalities, from permanently charged polyanions to hydrophobic polythioethers to glycopolymers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1.87 (m, 0.5mH), 1.73 (m, nH), 1.57 (br m, [2mH + 0.5nH]), 1.35 (br m, [2mH + 3H]), 0.91 (br t, 3mH). For more details see Table 4 in SI and Figure S4 for 1H-NMR in CDCl3.
    • 1. Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science 2007, 32, (1), 93-146.
    • 2. Szwarc, M., Living polymers and mechanisms of anionic polymerization. In Living Polymers and Mechanisms of Anionic Polymerization, Springer Berlin Heidelberg: 1983; Vol. 49, pp 1-177.
    • 3. Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chemical Reviews 2015.
    • 4. Patten, T. E.; Xia, J.; Abernathy, T.; Matyjaszewski, K. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization. Science 1996, 272, (5263), 866- 868.
    • 5. Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat Commun 2013, 4.
    • 6. Günay, K. A.; Theato, P.; Klok, H.-A., History of Post-Polymerization Modification. In Functional Polymers by Post-Polymerization Modification, Wiley-VCH Verlag GmbH & Co. KGaA: 2012; pp 1-44.
    • 7. Gunay, K. A.; Theato, P.; Klok, H. A. Standing on the shoulders of hermann staudinger: Postpolymerization modification from past to present. J. Polym. Sci. Pol. Chem. 2013, 51, (1), 1-28.
    • 8. Gauthier, M. A.; Gibson, M. I.; Klok, H.-A. Synthesis of Functional Polymers by PostPolymerization Modification. Angewandte Chemie International Edition 2009, 48, (1), 48-58.
    • 9. Wong, L.; Boyer, C.; Jia, Z.; Zareie, H. M.; Davis, T. P.; Bulmus, V. Synthesis of Versatile ThiolReactive Polymer Scaffolds via RAFT Polymerization. Biomacromolecules 2008, 9, (7), 1934- 1944.
    • 10. Nuhn, L.; Overhoff, I.; Sperner, M.; Kaltenberg, K.; Zentel, R. RAFT-polymerized poly(hexafluoroisopropyl methacrylate)s as precursors for functional water-soluble polymers. Polym. Chem. 2014, 5, (7), 2484-2495.
    • 11. Eberhardt, M.; Théato, P. RAFT Polymerization of Pentafluorophenyl Methacrylate: Preparation of Reactive Linear Diblock Copolymers. Macromol. Rapid Commun. 2005, 26, (18), 1488-1493.
    • 12. Appukuttan, V. K.; Dupont, A.; Denis-Quanquin, S.; Andraud, C.; Monnereau, C. Mild and efficient bromination of poly(hydroxyethyl acrylate) and its use towards ionic-liquid containing polymers. Polym. Chem. 2012, 3, (10), 2723-2726.
    • 13. Ashok Kothapalli, V.; Shetty, M.; de los Santos, C.; Hobbs, C. E. Thio-bromo “Click,” postpolymerization strategy for functionalizing ring opening metathesis polymerization (ROMP)- derived materials. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54, (1), 179-185.
    • 14. Abdelkader, O.; Moebs-Sanchez, S.; Queneau, Y.; Bernard, J.; Fleury, E. Generation of welldefined clickable glycopolymers from aqueous RAFT polymerization of isomaltulose-derived acrylamides. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49, (6), 1309-1318.
    • 15. Li, G.; Wang, H.; Zheng, H.; Bai, R. Room-temperature RAFT copolymerization of 2- chloroallyl azide with methyl acrylate and versatile applications of the azide copolymers. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (6), 1348-1356.
    • 16. Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Highly Efficient “Click” Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules 2005, 38, (18), 7540-7545.
    • 17. Bousquet, A.; Barner-Kowollik, C.; Stenzel, M. H. Synthesis of comb polymers via graftingonto macromolecules bearing pendant diene groups via the hetero-Diels-Alder-RAFT click concept. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (8), 1773-1781.
    • 18. Inglis, A. J.; Sinnwell, S.; Stenzel, M. H.; Barner-Kowollik, C. Ultrafast Click Conjugation of Macromolecular Building Blocks at Ambient Temperature. Angewandte Chemie International Edition 2009, 48, (13), 2411-2414.
    • 19. Kim, T.-D.; Luo, J.; Tian, Y.; Ka, J.-W.; Tucker, N. M.; Haller, M.; Kang, J.-W.; Jen, A. K. Y. Diels−Alder “Click Chemistry” for Highly Efficient Electrooptic Polymers. Macromolecules 2006, 39, (5), 1676-1680.
    • 20. Liu, P. S.; Song, J. Well-Controlled ATRP of 2-(2-(2-azidoethyoxy)ethoxy)ethyl Methacrylate for High-Density Click Functionalization of Polymers and Metallic Substrates. J. Polym. Sci. Pol. Chem. 2016, 54, (9), 1268-1277.
    • 21. Gunay, K. A.; Schuwer, N.; Klok, H.-A. Synthesis and post-polymerization modification of poly(pentafluorophenyl methacrylate) brushes. Polym. Chem. 2012, 3, (8), 2186-2192.
    • 22. Gibson, M. I.; Fröhlich, E.; Klok, H.-A. Postpolymerization modification of poly(pentafluorophenyl methacrylate): Synthesis of a diverse water-soluble polymer library. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, (17), 4332-4345.
    • 23. Kakuchi, R.; Theato, P. Sequential post-polymerization modification reactions of poly(pentafluorophenyl 4-vinylbenzenesulfonate). Polym. Chem. 2014, 5, (7), 2320-2325.
    • 24. Brendel, J. C.; Liu, F.; Lang, A. S.; Russell, T. P.; Thelakkat, M. Macroscopic Vertical Alignment of Nanodomains in Thin Films of Semiconductor Amphiphilic Block Copolymers. ACS Nano 2013, 7, (7), 6069-6078.
    • 38. Moad, G.; Barner-Kowollik, C., The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges. In Handbook of RAFT Polymerization, Wiley-VCH Verlag GmbH & Co. KGaA: 2008; pp 51-104.
    • 39. Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process - A Second Update. Aust. J. Chem. 2009, 62, (11), 1402-1472.
    • 40. Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process - A Third Update. Aust. J. Chem. 2012, 65, (8), 985-1076.
    • 41. Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Exploitation of the Degenerative Transfer Mechanism in RAFT Polymerization for Synthesis of Polymer of High Livingness at Full Monomer Conversion. Macromolecules 2014, 47, (2), 639-649.
    • 42. Martin, L.; Gody, G.; Perrier, S. Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polym. Chem. 2015, 6, (27), 4875-4886.
    • 43. Stenzel, M. H., Complex Architecture Design via the RAFT Process: Scope, Strengths and Limitations. In Handbook of RAFT Polymerization, Wiley-VCH Verlag GmbH & Co. KGaA: 2008; pp 315-372.
    • 44. de Lambert, B.; Charreyre, M.-T.; Chaix, C.; Pichot, C. Poly(N-tert-butyl acrylamide-b-Nacryloylmorpholine) amphiphilic block copolymers via RAFT polymerization: Synthesis, purification and characterization. Polymer 2007, 48, (2), 437-447.
    • 45. Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:  The RAFT Process. Macromolecules 1999, 32, (6), 2071-2074.
    • 46. Tang, C.; Kowalewski, T.; Matyjaszewski, K. RAFT Polymerization of Acrylonitrile and Preparation of Block Copolymers Using 2-Cyanoethyl Dithiobenzoate as the Transfer Agent. Macromolecules 2003, 36, (23), 8587-8589.
    • 47. Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. Synthesis of dendrimers through divergent iterative thio-bromo “Click” chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, (15), 3931-3939.
    • 48. Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. Synthesis of dendritic macromolecules through divergent iterative thio-bromo “Click” chemistry and SET-LRP. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, (15), 3940-3948.
    • 49. Xu, J.; Tao, L.; Boyer, C.; Lowe, A. B.; Davis, T. P. Combining Thio−Bromo “Click” Chemistry and RAFT Polymerization: A Powerful Tool for Preparing Functionalized Multiblock and Hyperbranched Polymers. Macromolecules 2010, 43, (1), 20-24.
    • 50. Chen, S.; Ströhl, D.; Binder, W. H. Orthogonal Modification of Polymers via Thio-Bromo “Click” Reaction and Supramolecular Chemistry: An Easy Method Toward Head-to-Tail SelfAssembled Supramolecular Polymers. ACS Macro Letters 2015, 4, (1), 48-52.
    • 51. Tsarevsky, N. V.; Matyjaszewski, K. Reversible Redox Cleavage/Coupling of Polystyrene with Disulfide or Thiol Groups Prepared by Atom Transfer Radical Polymerization. Macromolecules 2002, 35, (24), 9009-9014.
    • 52. Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Step-Growth “Click” Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. Macromolecules 2005, 38, (9), 3558-3561.
    • 53. Lutz, J.-F. 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angewandte Chemie International Edition 2007, 46, (7), 1018- 1025.
    • 54. Goldmann, A. S.; Glassner, M.; Inglis, A. J.; Barner-Kowollik, C. Post-Functionalization of Polymers via Orthogonal Ligation Chemistry. Macromol. Rapid Commun. 2013, 34, (10), 810-849.
    • 55. Ladmiral, V.; Legge, T. M.; Zhao, Y.; Perrier, S. “Click” Chemistry and Radical Polymerization: Potential Loss of Orthogonality. Macromolecules 2008, 41, (18), 6728-6732.
    • 56. Li, Y.; Yang, J.; Benicewicz, B. C. Well-controlled polymerization of 2-azidoethyl methacrylate at near room temperature and click functionalization. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, (18), 4300-4308.
    • 57. Laschewsky, A. Recent trends in the synthesis of polyelectrolytes. Current Opinion in Colloid & Interface Science 2012, 17, (2), 56-63.
    • 58. Kolomanska, J.; Johnston, P.; Gregori, A.; Fraga Dominguez, I.; Egelhaaf, H.-J.; Perrier, S.; Rivaton, A.; Dagron-Lartigau, C.; Topham, P. D. Design, synthesis and thermal behaviour of a series of well-defined clickable and triggerable sulfonate polymers. RSC Advances 2015, 5, (82), 66554-66562.
    • 59. Sumerlin, B. S.; Lowe, A. B.; Thomas, D. B.; Convertine, A. J.; Donovan, M. S.; McCormick, C. L. Aqueous solution properties of pH-responsive AB diblock acrylamido-styrenic copolymers synthesized via aqueous reversible addition-fragmentation chain transfer. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42, (7), 1724-1734.
    • 60. Willcock, H.; O'Reilly, R. K. End group removal and modification of RAFT polymers. Polym. Chem. 2010, 1, (2), 149-157.
    • 61. Strecker, A. Ueber das Lecithin. Justus Liebigs Annalen der Chemie 1868, 148, (1), 77-90.
    • 62. Reed, R. M.; Tartar, H. V. The Preparation of Sodium Alkyl Sulfonates. Journal of the American Chemical Society 1935, 57, (3), 570-571.
    • 63. Eissa, A.; Cameron, N., Glycopolymer Conjugates. In Bio-synthetic Polymer Conjugates, Schlaad, H., Ed. Springer Berlin Heidelberg: 2013; Vol. 253, pp 71-114.
    • 64. von der Ehe, C.; Rinkenauer, A.; Weber, C.; Szamosvari, D.; Gottschaldt, M.; Schubert, U. S. Selective Uptake of a Fructose Glycopolymer Prepared by RAFT Polymerization into Human Breast Cancer Cells. Macromolecular Bioscience 2016, 16, (4), 508-521.
    • 65. Becer, C. R.; Babiuch, K.; Pilz, D.; Hornig, S.; Heinze, T.; Gottschaldt, M.; Schubert, U. S. Clicking Pentafluorostyrene Copolymers: Synthesis, Nanoprecipitation, and Glycosylation. Macromolecules 2009, 42, (7), 2387-2394.
    • 66. Burns, J. A.; Gibson, M. I.; Becer, C. R., Glycopolymers via Post-Polymerization Modification Techniques. In Functional Polymers by Post-Polymerization Modification, Wiley-VCH Verlag GmbH & Co. KGaA: 2012; pp 237-265.
    • 67. Maheshwari, R.; Levenson, E. A.; Kiick, K. L. Manipulation of Electrostatic and Saccharide Linker Interactions in the Design of Efficient Glycopolypeptide-Based Cholera Toxin Inhibitors. Macromolecular Bioscience 2010, 10, (1), 68-81.
    • 68. Zwicker, V. E.; Liu, X.; Yuen, K. K. Y.; Jolliffe, K. A. Triazole-containing zinc(II)dipicolylamine-functionalised peptides as highly selective pyrophosphate sensors in physiological media. Supramolecular Chemistry 2016, 28, (1-2), 192-200.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    67
    67%
  • No similar publications.

Share - Bookmark

Cite this article