Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lobo, P.; Christie, S.; Khandelwal, B.; Blakey, S.G.; Raper, D.W. (2015)
Publisher: American Chemical Society
Languages: English
Types: Article
The aviation industry is increasingly focused on the development of sustainable alternative fuels to augment and diversify fuel supplies while simultaneously reducing its environmental impact. The impact of airport operations on local air quality and aviation-related greenhouse gas emissions on a life cycle basis have been shown to be reduced with the use of alternative fuels. However, the evaluation of incremental variations in fuel composition of a single alternative fuel on the production of non-volatile particulate matter (nvPM) emissions has not been explored. This is critical to understanding the emission profile for aircraft engines burning alternative fuels and the impact of emissions on local air quality and climate change. A systematic evaluation of nvPM emissions from a GTCP85 aircraft auxiliary power unit (APU) burning 16 different blends of used cooking oil (UCO)-derived hydroprocessed esters and fatty acids (HEFA)-type alternative fuel with a conventional Jet A-1 baseline fuel was performed. The nvPM number- and mass-based emission indices for the 16 fuel blends and neat UCO–HEFA fuel were compared against those for the baseline Jet A-1 fuel at three APU operating conditions. The large data set from this study allows for the correlation between fuel composition and nvPM production to be expressed with greater confidence. The reductions in nvPM were found to be greater with increasing fuel hydrogen content (higher proportion of UCO–HEFA in the fuel blend). For a 50:50 blend of UCO–HEFA and Jet A-1, which would meet current ASTM specifications, the average reduction in nvPM number-based emissions was ∼35%, while that for mass-based emissions was ∼60%. The nvPM size distributions were found to narrow and shift to smaller sizes as the UCO–HEFA component of the fuel blend increased. This shift has a greater impact on the reduction in nvPM mass compared to the overall decrease in the nvPM number when comparing the UCO–HEFA fuel blends to the baseline Jet A-1.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2. Chiaramonti, D.; Prussi, M.; Buffi, M.; Tacconi, D. Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Appl. Energy 2014, 136, 767-774.
    • 3. Lufthansa burnFAIR project, 2014: http://www.puresky.de/en/#/biofuel-in-practicaltests/burnfair-everyday-operations-with-biofuel/
    • 4. SkyNRG Evaluation Report JFK Green Lane Program, 2014: http://skynrg.com/wpcontent/uploads/2014/03/SkyNRG-JFK-document_Digitaal.pdf
    • 5. ASTM International. ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives; ASTM International: West Conshohocken, PA, 2012.
    • 6. Wilson, G. R.; Edwards, T.; Corporan, E.; Freerks, R. L. Certification of Alternative Aviation Fuels and Blend Components. Energy Fuels 2013, 27, 962-966.
    • 7. Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons; ASTM D7566; ASTM International: West Conshohocken, PA.
    • 8. Lobo, P.; Hagen, D.E.; Whitefield, P.D. Comparison of PM emissions from a Commercial Jet Engine burning Conventional, Biomass, and Fischer-Tropsch Fuels, Environ. Sci. Technol. 2011, 45, 10744-10749.
    • 9. Shonnard, D.R.; Williams, L.; Kalnes, T. N. Camelina-derived jet fuel and diesel: Sustainable advanced biofuels, Environ. Prog. Sustain. Energy 2010, 3, 382-392.
    • 10. Han, J., Elgowainy, A., Cai, H., Wang, M.Q. Life-cycle analysis of bio-based aviation fuels Bioresource Technology 2013, 150, 447 456.
    • 11. Timko, M.T.; Yu, Z.; Onasch, T.B.; Wong, H.-W.; Miake-Lye, R.C.; Beyersdorf, A.J.; Anderson, B.E.; Thornhill, K L.; Winstead, E.L.; Corporan, E.; DeWitt, M.J.; Klingshirn, C.D.; Wey, C.; Tacina, K.; Liscinsky, D.S.; Howard, R.; Bhargava, A. Particulate Emissions of Gas Turbine Engine Combustion of a Fischer-Tropsch Synthetic Fuel. Energy Fuels 2010, 24, 5883-5896.
    • 12. Lobo , P.; Rye, L.; Williams, P. I.; Christie, S.; Uryga-Bugajska, I.; Wilson, C. W.; Hagen, D. E.; Whitefield, P. D.; Blakey, S.; Coe, H.; Raper, D.; and Pourkashanian, M. Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine - Part 1: Gaseous and Particulate Matter Emissions. Environ. Sci. Technol. 2012, 46, 10805-10811.
    • 13. Cain, J.; DeWitt, M.J.; Blunck, D.; Corporan, E.; Striebich, R.; Anneken, D.; Klingshirn, C.; Roquemore, W.M.; Vander Wal, R. Characterization of Gaseous and Particulate Emissions From a Turboshaft Engine Burning Conventional, Alternative, and Surrogate Fuels, Energy Fuels 2013, 27, 2290-2302.
    • 15. Moore, R.H.; Shook, M.; Beyersdorf, A.; Corr, C.; Herndon, S.; Knighton, W.B.; Miake-Lye, R.; Thornhill, K.L.; Winstead, E.L.; Yu, Z.; Ziemba, L.D.; Anderson, B.E. Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions. Energy Fuels 2015, 29, .
    • 16. Shafer, L.M.; Striebich, R.C.; Gomach, J.; Edwards, T. Chemical Class Composition of Commercial Jet Fuels and Other Specialty Kerosene Fuels. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference 2006, AIAA Paper 2006- 7972.
    • 17. Dryer, F.L. Chemical kinetic and combustion characteristics of transportation fuels. Proc. Combust. Inst. 2015, 35, 117 144.
    • 18. Corporan, E.; Edwards, T.; Shafer, L.; DeWitt, M.J.; Klingshirn, C.; Zabarnick, S.; West, Z.; Striebich, R.; Graham, J.; Klein, J. Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels. Energy Fuels 2011, 25, 955-966.
    • 19. Hileman, J.I.; Stratton, R. W.; Donohoo, P.E. Energy Content and Alternative Jet Fuel Viability, J. Propul. Power 2010, 26, 1184 1195.
    • 20. Blakey, S.; Rye, L.; Wilson, C.W. Aviation gas turbine alternative fuels: A review. Proc. Combust. Inst. 2011, 33, 2863 2885.
    • 21. Striebich, R.C.; Shafer, L.M.; Adams, R.K.; West, Z.J.; DeWitt, M.J.; Zabarnick, S. Hydrocarbon Group-Type Analysis of Petroleum-Derived and Synthetic Fuels Using Two-Dimensional Gas Chromatography. Energy Fuels 2014, 28, 5696-5706.
    • 22. SAE Aerospace Information Report (AIR) 6241. Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines, 2013. SAE International, Warrendale, PA.
    • 23. Lobo, P.; Durdina, L.; Smallwood, G.J.; Rindlisbacher, T.; Siegerist, F.; Black, E.A.; Yu, Z.; Mensah, A.A.; Hagen, D.E.; Miake-Lye, R.C.; Thomson, K.A.; Brem, B.T.; Corbin, J.C..; Abegglen, M.; Sierau, B.; Whitefield, P.D.; Wang, J. Measurement of Aircraft Engine Non-volatile PM Emissions: Results from the Aviation - Particle Regulatory Instrument Demonstration Experiment (A-PRIDE) 4 Campaign, Aerosol Sci. Technol. 2015, 49, 472-484.
    • 24. Snelling, D.R.; Smallwood, G.J.; Liu, F.; Gülder, Ö.L.; Bachalo, W.D. A calibrationindependent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 2005, 44, 6773 6785.
    • 25. Schindler, W.; Haisch, C.; Beck, H. A.; Niessner, R.; Jacob, E.; Rothe, D. A. Photoacoustic Sensor System for Time Resolved Quantification of Diesel Soot Emissions. SAE Technical Paper 2004, 2004-01-0968.
    • 26. Reavell, K.; Hands, T.; Collings, N. A fast response particulate spectrometer for combustion aerosols. SAE Technical Paper 2002, 2002-01-2714.
    • 27. Hagen, D.E.; Lobo, P.; Whitefield, P.D.; Trueblood, M.B.; Alofs, D.J.; Schmid, O. Performance Evaluation for a Fast Mobility-Based Particle Spectrometer for Aircraft Exhaust Particles. J. Propul. Power 2009, 25, 628-634.
    • 28. Laborde, M.; Mertes, P.; Zieger, P.; Dommen, J.; Baltensperger, U.; Gysel, M. Sensitivity of the Single Particle Soot Photometer to different black carbon types. Atmos. Meas. Tech. 2012, 5, 1031 1043.
    • 29. Kinsey, J.S.; Timko, M.T.; Herndon, S.C.; Wood, E.C.; Yu, Z.; Miake-Lye, R.C.; Lobo, P.; Whitefield, P.; Hagen D.; Wey, C.; Anderson, B.E.; Beyersdorf, A.J.; Hudgins, C.H.; Thornhill, K.L.; Winstead, E.; Howard, R.; Bulzan, D.I.; Tacina, K.B.; Knighton, W.B. Determination of the emissions from an aircraft auxiliary power unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX). J. Air Waste Manage. 2012, 62, 420-430.
    • 30. Lobo, P.; Hagen, D.E.; Whitefield, P.D.; Alofs, D.J. Physical Characterization of Aerosol Emissions from a Commercial Gas Turbine Engine. J. Propul. Power 2007, 23, 919-929.
    • 31. Lobo, P.; Hagen, D.E.; Whitefield, P.D.; Raper, D. PM Emissions Measurements of InService Commercial Aircraft Engines during the Delta-Atlanta Hartsfield Study. Atmos. Environ. 2015, 104, 237-245.
    • 32. Vander Wal, R.L.; Bryg, V.M.; Huang, C.-H. Insights into the combustion chemistry within a gas-turbine driven auxiliary power unit as a function of fuel type and power level using soot nanostructure as a tracer. Fuel 2014, 115, 282-287.
    • 33. Yang, Y.; Boehman, A.L.; Santoro, R.J. A study of jet fuel sooting tendency using the threshold sooting index (TSI) model. Combust. Flame 2007, 149, 191 205.
    • 34. Saffaripour, M.; Zabeti, P.; Kholghy, M.; Thomson, M.J. An Experimental Comparison of the Sooting Behavior of Synthetic Jet Fuels. Energy Fuels 2011, 25, 5584 5593.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | ITAKA

Cite this article