LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Preprint
Subjects: Nonlinear Sciences - Pattern Formation and Solitons, Physics - Optics

Classified by OpenAIRE into

arxiv: Physics::Optics
A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy, and telecommunications.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Ma, L.‑S., et al. Optical Frequency Synthesis and Comparison with Uncertainty at the 10- 19 Level. Science 303, 1843-1845 (2004).
    • 2. Cundiff, S.T. and Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325-342 (2003).
    • 3. Koke, S., et al. Direct frequency comb synthesis with arbitrary offset and shot-noiselimited phase noise. Nature Photon. 4, 462-465 (2010)
    • 4. Schibli, T. R., et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355-359 (2008)
    • 5. Takahata, K., et al. Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-m difference-frequency-generation spectrometer and a fiber-based frequency comb. Phys. Rev. A 80, 032518 (2009).
    • 6. Mandon, J., Guelachvili, G., Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 3, 99-102 (2009).
    • 7. Fortier, T.M., et al. Generation of ultrastable microwaves via optical frequency division. Nature Photon. 5, 425-429 (2011).
    • 8. Ghelfi, P., et al. A fully photonics-based coherent radar system. Nature 507, 341-345 (2014).
    • 9. Steinmetz, T., et al. Laser Frequency Combs for Astronomical Observations. Science 321, 1335-1337 (2008).
    • 10. Hillerkuss, D., et al. 26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon. 5, 364-371 (2011).
    • 11. Haus, H. A. Mode-locking of lasers. IEEE J. Select. Topics Quantum Electron. 6, 1173-1185 (2000).
    • 12. Grelu, Ph., Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature Photon. 6, 84-92 (2012)
    • 13. F. Wang, F. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotech. 3, 738 - 742 (2008)
    • 14. Martinez, A., Sun, Zh., Nanotube and graphene saturable absorbers for fibre lasers. Nature Photon. 7, 842-845 (2013)
    • 15. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831-838 (2003)
    • 16. Peccianti, M., et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nature Commun. 3, doi:10.1038/ncomms1762 (2012)
    • 17. Kalashnikov, V.L., Podivilov, E., Chernykh, A., Apolonski, A. Chirped-pulse oscillators: theory and experiment. Appl. Phys. B 83. 503-510 (2006).
    • 18. Gray, S., Grudinin, A. B., Loh, W. H., Payne, D. N. Femtosecond harmonically modelocked fiber laser with time jitter below 1 ps. Optics Lett. 20 189-191 (1995).
    • 19. Grudinin, A. B. & Gray, S. Passive harmonic mode locking in soliton fiber lasers. J. Opt. Soc. Am. B 14, 144-154 (1997).
    • 20. Cross, M. C., Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851-1112 (1993)
    • 21. Szwaj Ch., Bielawski, S., Derozier, D., Erneux, T. Faraday instability in a Multimode Laser. Phys. Rev. Lett. 80, 3968-3971 (1998)
    • 22. Pessina E. M., Bonfrate G., Fontana F., and Lugiato L. A. ,Experimental observation of the Risken-Nummedal-Graham-Haken multimode laser instability Phys. Rev. A 56, 5, 4086-4093 (1997)
    • 23. Risken H., Nummedal K., Instability of off resonance modes in lasers. Phys. Lett. A 26, 275-276 (1968);
    • 24. Risken H., Nummedal K., Self-Pulsing in Lasers. J. Appl. Phys. 39, 4662-4672 (1968)
    • 25. Lugiato, L., Prati, F., Brambila, M. Nonlinear Optical Systems (Cambridge University Press, Cambridge, 2015).
    • 26. Ciuchi, S., San Miguel, M., Abraham, N. B. Polarization partition noise and intensity fluctuation linewidth in a nearly symmetric vector laser. Phys. Rev. A 57. 3843-3857 (1998).
    • 27. Pikovsky, A., Rosenblum, M., Kurths, J. Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001).
    • 28. Sergeyev, S. V., et al. Spiral attractor created by vector solitons. Light: Science & Applications 3. e131 (2014).
    • 29. Sergeyev, S. V. Fast and slowly evolving vector solitons in mode-locked fibre lasers. Phil. Trans. R. Soc. A 372. 20140006 (2014).
    • 30. Gong, Y. D., Shum, P., Tang, D. Y., Lu, C., Guo, X. 660GHz soliton source based on modulation instability in a short cavity. Opt. Express 11, 2480-2485 (2003)
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | GRIFFON

Cite this article