Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cook, Alexander B.; Barbey, Raphael; Burns, James A.; Perrier, Sébastien (2016)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD
We propose a versatile approach to the production of hyperbranched polymers with high degrees of branching and low dispersity values (Đ), involving slow monomer addition of a thiol/yne monomer to multifunctional core molecules in the presence of photoinitiator and under UV irradiation. The small thiol/yne monomer was synthesized via 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC·HCl) esterification, and batch polymerizations were performed at varying concentrations. The batch thiol–yne polymerizations had fast reaction kinetics and large dispersity values that increased with increasing concentration. Introduction of monomer by slow addition to a multifunctional alkyne core (tri(prop-2-yn-1-yl) 1,3,5-benzenetricarboxylate) or alkene core (triallyl 1,3,5-benzenetricarboxylate) was found to lower dispersity at monomer concentrations of 0.5–2.0 M. Degrees of branching were determined by 1H NMR spectroscopy to be greater than 0.8 in most cases. Increasing the fraction of core molecule was found to decrease dispersity to values as low as 1.26 and 1.38 for the alkene core and alkyne core, respectively, for monomer concentrations of 0.5 M with 10 mol % core molecule. Molecular weights of the hyperbranched structures were also determined by light scattering size exclusion chromatography (SEC) detection, and intrinsic viscosities were determined by viscometry SEC detection. The Kuhn–Mark–Houwink–Sakurada α parameter decreased from 0.35 for the batch process to values as low as 0.21 (10 mol % alkene core) or 0.16 (10 mol % alkyne core), indicating that the thiol–yne structures became more globular and dense with the slow monomer addition strategy. This simple and versatile approach is a promising new development for the design of hyperbranched polymers of well-controlled molecular weight and molecular weight distributions, with very high degrees of branching.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, 183.
    • (2) Jikei, M.; Kakimoto, M. Prog. Polym. Sci. 2001, 26, 1233.
    • (3) Frechet, J. M. J.; Hawker, C. J.; Gitsov, I.; Leon, J. W. J. Macromol. Sci., Pure Appl. Chem. 1996, A33, 1399.
    • (4) Voit, B. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2505.
    • (5) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117.
    • (6) Buhleier, E.; Wehner, W.; Vogtle, F. Synthesis-Stuttgart 1978, 155.
    • (7) Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638.
    • (8) Flory, P. J. J. Am. Chem. Soc. 1952, 74, 2718.
    • (9) Kim, Y. H.; Webster, O. W. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1988, 29, 310.
    • (10) Kim, Y. H.; Webster, O. W. Macromolecules 1992, 25, 5561.
    • (11) Kim, Y. H.; Webster, O. W. J. Am. Chem. Soc. 1990, 112, 4592.
    • (12) Holter, D.; Burgath, A.; Frey, H. Acta Polym. 1997, 48, 30.
    • (13) Holter, D.; Frey, H. Acta Polym. 1997, 48, 298.
    • (14) Fairbanks, B. D.; Scott, T. F.; Kloxin, C. J.; Anseth, K. S.; Bowman, C. N. Macromolecules 2009, 42, 211.
    • (15) Konkolewicz, D.; Gray-Weale, A.; Perrier, S. J. Am. Chem. Soc. 2009, 131, (16) Konkolewicz, D.; Poon, C. K.; Gray-Weale, A.; Perrier, S. Chem. Commun. 2011, 47, 239.
    • (17) Barbey, R.; Perrier, S. Macromolecules 2014, 47, 6697.
    • (18) Barbey, R.; Perrier, S. ACS Macro Lett. 2013, 2, 366.
    • (19) Shi, Y.; Graff, R. W.; Cao, X.; Wang, X.; Gao, H. Angew. Chem. Int. Ed. 2015, 54, 7631.
    • Killops, K. L.; Campos, L. M.; Hawker, C. J. J. Am. Chem. Soc. 2008, 130, (21) Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V. V. Macromolecules 2005, 38, 3663.
    • (22) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. Int. Ed. 2004, 43, 3928.
    • (23) Walter, M. V.; Malkoch, M. Chem. Soc. Rev. 2012, 41, 4593.
    • (24) Graff, R. W.; Wang, X.; Gao, H. Macromolecules 2015, 48, 2118.
    • (25) Min, K.; Gao, H. J. Am. Chem. Soc. 2012, 134, 15680.
    • (26) Hanselmann, R.; Holter, D.; Frey, H. Macromolecules 1998, 31, 3790.
    • (27) Radke, W.; Litvinenko, G.; Muller, A. H. E. Macromolecules 1998, 31, 239.
    • (28) Bharathi, P.; Moore, J. S. Macromolecules 2000, 33, 3212.
    • (29) Bernal, D. P.; Bedrossian, L.; Collins, K.; Fossum, E. Macromolecules 2003, 36, 333.
    • (30) Roy, R. K.; Ramakrishnan, S. Macromolecules 2011, 44, 8398.
    • (31) Chen, J.-Y.; Smet, M.; Zhang, J.-C.; Shao, W.-K.; Li, X.; Zhang, K.; Fu, Y.; Jiao, Y.-H.; Sun, T.; Dehaen, W.; Liu, F.-C.; Han, E.-H. Polymer Chemistry 2014, 5, 2401.
    • (32) Willenbacher, J.; Schmidt, B.; Schulze-Suenninghausen, D.; Altintas, O.; Luy, B.; Delaittre, G.; Barner-Kowollik, C. Chem. Commun. 2014, 50, 7056.
    • (33) Malmstrom, E.; Johansson, M.; Hult, A. Macromolecules 1995, 28, 1698.
    • (34) Feast, W. J.; Stainton, N. M. J. Mater. Chem. 1995, 5, 405.
    • (35) Lach, C.; Muller, P.; Frey, H.; Mulhaupt, R. Macromol. Rapid Commun. 1997, 18, 253.
    • (36) Parker, D.; Feast, W. J. Macromolecules 2001, 34, 5792.
    • (37) Hobson, L. J.; Feast, W. J. Polymer 1999, 40, 1279.
    • (38) Hobson, L. J.; Feast, W. J. Chem. Commun. 1997, 2067.
    • (39) Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R. Macromolecules 1999, 32, 4240.
    • (40) Hawker, C. J.; Lee, R.; Frechet, J. M. J. J. Am. Chem. Soc. 1991, 113, 4583.
    • (41) Flory, P. J. J. Am. Chem. Soc. 1941, 63, 3083.
    • (42) Han, J.; Zhao, B.; Gao, Y. Q.; Tang, A. J.; Gao, C. Polymer Chemistry 2011, 2, 2175.
    • (43) Cheng, K. C.; Wang, L. Y. Macromolecules 2002, 35, 5657.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok