LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: IOP Publishing Ltd.
Languages: English
Types: Article
Subjects: Astrophysics - Solar and Stellar Astrophysics, QB, QC

Classified by OpenAIRE into

arxiv: Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics
In the ONeMg cores of $8.8-9.5~{\rm M}_\odot$ stars, neon and oxygen burning is ignited off-center. Whether the neon-oxygen flame propagates to the center is critical to determine whether these stars undergo Fe core collapse or electron capture induced ONeMg core collapse. We present more details of stars that ignite neon and oxygen burning off-center. The neon flame is established in a similar manner to the carbon flame of super-AGB stars, albeit with a narrower flame width. The criteria for establishing a flame are able to be met if the strict Schwarzschild criterion for convective instability is adopted. Mixing across the interface of the convective shell disrupts the conditions for the propagation of the burning front and instead the shell burns as a series of inward-moving flashes. While this may not directly affect whether the burning will reach the center (as in super-AGB stars), the core is allowed to contract between each shell flash. Reduction of the electron fraction in the shell reduces the Chandrasekhar mass and the center reaches the threshold density for the URCA process to activate and steer the remaining evolution of the core. This highlights the importance of a more accurate treatment of mixing in the stellar interior for yet another important question in stellar astrophysics - determining the properties of stellar evolution and supernova progenitors at the boundary between electron capture supernova and iron core-collapse supernova.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, J. P., Habergham, S. M., James, P. A., & Hamuy, M. 2012, MNRAS, 424, 1372
    • Arnett, W. D. 1972, ApJ, 176, 699
    • Arnett, W. D. 1974, ApJ, 193, 169
    • Charbonnel, C., & Zahn, J.-P. 2007, A&A, 467, L15
    • Chen, M. C., Herwig, F., Denissenkov, P. A., & Paxton, B. 2014, MNRAS, 440, 1274
    • Cyburt, R. H., Amthor, A. M., Ferguson, R., et al. 2010, ApJS, 189, 240
    • Denissenkov, P. A. 2010, ApJ, 723, 563
    • Denissenkov, P. A., Herwig, F., Truran, J. W., & Paxton, B. 2013, ApJ, 772, 37
    • Freytag, B., Ludwig, H.-G., & Steffen, M. 1996, A&A, 313, 497
    • Habets, G. M. H. J. 1986, A&A, 167, 61
    • Hansen, C. J., Primas, F., Hartman, H., et al. 2012, A&A, 545, A31
    • Herwig, F. 2000, A&A, 360, 952
    • Herwig, F., Bloecker, T., Schoenberner, D., & El Eid, M. 1997, A&A, 324, L81
    • Herwig, F., Pignatari, M., Woodward, P. R., et al. 2011, ApJ, 727, 89
    • Herwig, F., Woodward, P. R., Lin, P.-H., Knox, M., & Fryer, C. 2014, ApJL, 792, L3
    • Jones, S., Hirschi, R., Nomoto, K., et al. 2013, ApJ, 772, 150
    • Knigge, C., Coe, M. J., & Podsiadlowski, P. 2011, Natur, 479, 372
    • Meakin, C. A., & Arnett, D. 2007, ApJ, 667, 448
    • Nomoto, K. 1980, in Texas Workshop on Type I Supernovae, ed. J. C. Wheeler (Austin, TX: Univ. Texas), 164
    • Nomoto, K., & Hashimoto, M. 1988, PhR, 163, 13
    • Oda, T., Hino, M., Muto, K., Takahara, M., & Sato, K. 1994, ADNDT, 56, 231
    • Siess, L. 2006, A&A, 448, 717
    • Siess, L. 2009, A&A, 497, 463
    • Smith, N. 2013, MNRAS, 434, 102
    • Tauris, T. M., Langer, N., Moriya, T. J., et al. 2013, ApJL, 778, L23
    • Timmes, F. X., Woosley, S. E., & Taam, R. E. 1994, ApJ, 420, 348
    • Toki, H., Suzuki, T., Nomoto, K., Jones, S., & Hirschi, R. 2013, PhRvC, 88, 015806
    • Traxler, A., Garaud, P., & Stellmach, S. 2011, ApJL, 728, L29
    • Umeda, H., Yoshida, T., & Takahashi, K. 2012, PTEP, 2012, 010000
    • Viallet, M., Meakin, C., Arnett, D., & Moca┬┤k, M. 2013, ApJ, 769, 1
    • Woosley, S. E., Heger, A., & Weaver, T. A. 2002, RvMP, 74, 1015
    • Woosley, S. E., Weaver, T. A., & Taam, R. E. 1980, in Texas Workshop on Type I Supernovae, ed. J. C. Wheeler (Austin, TX: Univ. Texas), 96
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | SHYNE

Cite this article