LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QC, QD
Using conductive atomic force microscopy, we introduce a method to simultaneously acquire electrical space-charge-limited current measurements and material properties such as Young’s modulus and surface adhesion with nanoscale resolution. We demonstrate the utility of this method using thin films of the prototypical, semiconducting polymer poly(3-hexylthiophene) (P3HT). Arrays of force–distance and current–voltage curves are acquired simultaneously, allowing the investigation of spatial heterogeneity and statistical analysis of correlations between material properties. Tip–surface contact mechanics are used to calculate the contact areas, allowing the accurate quantification of charge transport properties through the fitting of space-charge-limited current to a modified Mott–Gurney model to extract the charge transport mobility accurately at each point. Measurements were taken from room temperature to 140 °C under a constant nitrogen flow to investigate changes in the properties of P3HT under standard annealing conditions. The quantitative analysis of temperature-dependent charge transport and mechanical properties of P3HT is consistent with grain boundary limited transport models and shows qualitatively different behavior for annealed and unannealed samples. The acquisition and analysis procedures developed here are generally applicable to the study of a wide range of organic semiconductor thin films.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) MacDonald, G. A.; Veneman, P. A.; Placencia, D.; Armstrong, N.
    • R. Electrical Property Heterogeneity at Transparent Conductive Oxide/Organic Semiconductor Interfaces: Mapping Contact Ohmicity Using Conducting-Tip Atomic Force Microscopy. ACS Nano 2012, 6, 9623−9636.
    • (2) Collins, B. A.; Tumbleston, J. R.; Ade, H. Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability. J. Phys. Chem. Lett. 2011, 2, 3135−3145.
    • (3) Dang, M. T.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Adv. Mater. 2011, 23, 3597−3602.
    • (4) Mok, S. M.; Yan, F.; Chan, H. L. W. Organic Phototransistor Based on Poly(3-hexylthiophene)/TiO2 Nanoparticle Composite.
    • Appl. Phys. Lett. 2008, 93, 023310.
    • (5) Jia, H.; Gowrisanker, S.; Pant, G. K.; Wallace, R. M.; Gnade, B. E.
    • Effect of Poly (3-hexylthiophene) Film Thickness on Organic Thin Film Transistor Properties. J. Vac. Sci. Technol., A 2006, 24, 1228− 1232.
    • (6) Kline, R.; McGehee, M.; Kadnikova, E.; Liu, J.; Frećhet, J.
    • Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight. Adv. Mater. 2003, 15, 1519−1522.
    • (7) Himmelberger, S.; Vandewal, K.; Fei, Z.; Heeney, M.; Salleo, A.
    • Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers. Macromolecules 2014, 47, 7151−7157.
    • (8) Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. Investigation of Annealing Effects and Film Thickness Dependence of Polymer Solar Cells Based on Poly(3-hexylthiophene). J. Appl. Phys. 2005, 98, 043704.
    • (9) An, L.; Duan, Y.; Yuan, Y.; Zhou, L.; Zhang, J. Effect of Thermal Annealing on the Microstructure of P3HT Thin Film Investigated by RAIR Spectroscopy. Vib. Spectrosc. 2013, 68, 40−44.
    • (10) Bagui, A.; Iyer, S. S. K. Increase in Hole Mobility in Poly (3- hexylthiophene-2,5-diyl) Films Annealed Under Electric Field During the Solvent Drying Step. Org. Electron. 2014, 15, 1387−1395.
    • (11) Kline, R.; McGehee, M.; Kadnikova, E. Dependence of Regioregular Poly (3-hexylthiophene) Film Morphology and FieldEffect Mobility on Molecular Weight. Macromolecules 2005, 38, 3312− 3319.
    • (12) Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. Best of Both Worlds: Conjugated Polymers Exhibiting Good Photovoltaic Behavior and High Tensile Elasticity. Macromolecules 2014, 47, 1981− 1992.
    • (13) Im, M. J.; Son, S. Y.; Moon, B. J.; Lee, G.-Y.; Kim, J. H.; Park, T.
    • Improved Photovoltaic Performance by Enhanced Crystallinity of Poly(3-hexyl)thiophene. Org. Electron. 2013, 14, 3046−3051.
    • (14) Osaka, M.; Benten, H.; Lee, L.-T.; Ohkita, H.; Ito, S.
    • Development of Highly Conductive Nanodomains in Poly(3- hexylthiophene) Films Studied by Conductive Atomic Force Microscopy. Polymer 2013, 54, 3443−3447.
    • (15) O'Connor, B.; Chan, E. P.; Chan, C.; Conrad, B. R.; Richter, L.
    • J.; Kline, R. J.; Heeney, M.; McCulloch, I.; Soles, C. L.; DeLongchamp, D. M. Correlations Between Mechanical and Electrical Properties of Polythiophenes. ACS Nano 2010, 4, 7538−7544.
    • (16) Berger, R.; Butt, H.-J.; Retschke, M. B.; Weber, S. A. L. Electrical Modes in Scanning Probe Microscopy. Macromol. Rapid Commun.
    • (17) Reid, O. G.; Munechika, K.; Ginger, D. S. Space Charge Limited Current Measurements on Conjugated Polymer Films Using Conductive Atomic Force Microscopy. Nano Lett. 2008, 8, 1602− 1609.
    • (18) Nikiforov, M. P.; Darling, S. B. Improved Conductive Atomic Force Microscopy Measurements on Organic Photovoltaic Materials via Mitigation of Contact Area Uncertainty. Prog. Photovoltaics 2013, 21, 1433−1443.
    • (19) Laby, G., Kaye, T. H. Tables of Physical and Chemical Constants, 15th ed.; Longman, London, U.K., 1993.
    • (20) Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of Rectangular Atomic Force Microscope Cantilevers. Rev. Sci. Instrum.
    • (21) Hancox, I.; Sullivan, P.; Chauhan, K.; Beaumont, N.; Rochford, L.; Hatton, R.; Jones, T. The Effect of a MoOx Hole-Extracting Layer on the Performance of Organic Photovoltaic Cells Based on Small Molecule Planar Heterojunctions. Org. Electron. 2010, 11, 2019−2025.
    • (22) Shrotriya, V.; Li, G.; Yao, Y.; Chu, C.-W.; Yang, Y. Transition Metal Oxides as the Buffer Layer for Polymer Photovoltaic Cells. Appl.
    • Phys. Lett. 2006, 88, 073508.
    • (23) Butt, H.-J.; Cappella, B.; Kappl, M. Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications. Surf. Sci. Rep. 2005, 59, 1−152.
    • (24) Grant, C. A.; Alfouzan, A.; Gough, T.; Twigg, P. C.; Coates, P.
    • D. Nano-Scale Temperature Dependent Visco-Elastic Properties of Polyethylene Terephthalate (PET) using Atomic Force Microscope (AFM). Micron 2013, 44, 174−178.
    • (25) Alexeev, A.; Loos, J.; Koetse, M. M. Nanoscale Electrical Characterization of Semiconducting Polymer Blends by Conductive Atomic Force Microscopy. Ultramicroscopy 2006, 106, 191−199.
    • (26) Tahk, D.; Lee, H. H.; Khang, D. Y. Elastic Moduli of Organic Electronic Materials by the Buckling Method. Macromolecules 2009, 42, 7079−7083.
    • (27) Chiguvare, Z.; Dyakonov, V. Trap-Limited Hole Mobility in Semiconducting Poly(3-hexylthiophene). Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 235207.
    • (28) Pasveer, W.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.; Blom, P.; de Leeuw, D.; Michels, M. Unified Description of ChargeCarrier Mobilities in Disordered Semiconducting Polymers. Phys. Rev.
    • Lett. 2005, 94, 206601.
    • (29) Chirvase, D.; Chiguvare, Z.; Knipper, M.; Parisi, J.; Dyakonov, V.; Hummelen, J. C. Temperature Dependent Characteristics of Poly(3-hexylthiophene)-Fullerene Based Heterojunction Organic Solar Cells. J. Appl. Phys. 2003, 93, 3376−3383.
    • (30) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Funct. Mater. 2005, 15, 1617−1622.
    • (31) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Bred́as, J.-L. Charge Transport in Organic Semiconductors.
    • Chem. Rev. 2007, 107, 926−952.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article