LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: wc_880, qx_301, qx_510, qx_525, Article

Classified by OpenAIRE into

mesheuropmc: parasitic diseases, fungi
Understanding vector-parasite interactions is increasingly important as we move towards the endpoint goals set by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF), as interaction dynamics may change with reduced transmission pressure. Elimination models used to predict programmatic endpoints include parameters for vector-specific transmission dynamics, despite the fact that our knowledge of the host-seeking behaviour of filariasis infected mosquitoes is lacking. We observed a dynamic, stage-specific and density dependent change in Aedes aegypti behaviour towards host cues when exposed to Brugia malayi filarial parasites. Infected mosquitoes exhibited reduced activation and flight towards a host during the period of larval development (L1/L2), transitioning to a 5 fold increase in activation and flight towards a host when infective stage larvae (L3) were present (p < 0.001). In uninfected control mosquitoes, we observed a reduction in convergence towards a host during the same period. Furthermore, this behaviour was density dependent with non-activated mosquitoes harbouring a greater burden of L1 and L2 larvae while activated mosquitoes harboured a greater number of L3 (p < 0.001). Reductions in fecundity were also density-dependent, and extended to mosquitoes that were exposed to microfilariae but did not support larval development.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. World Health Organization. Global Programme to Eliminate Lymphatic Filariasis: Progress Report 2000-2009 and Strategic Plan 2010-2020. Available at http://apps.who.int/iris/bitstream/10665/44473/1/9789241500722_eng.pdf (2010).
    • 2. Gyapong, J. O., Kumaraswami, V., Biswas, G. & Ottensen, E. A. Treatment strategies underpinning the global programme to eliminate lymphatic filariasis. Expert Opinion of Pharmacotherapeutics. 6, 179-200 (2005).
    • 3. World Health Organization. eTh Global Burden of Disease: 2004 update. Update , 2010 146 http://doi.org/10.1038/npp.2011.85.
    • 4. World Health Organization. Lymphatic Filariasis factsheet (2016). Available at www.who.int/mediacentre/factsheets/fs102/en/ (Accessed: 21st April 2016).
    • 5. Paily, K. P., Hoti, S. L. & Das, P. K. A review of the complexity of biology of lymphatic filarial parasites. J . Paras. Dis. 33(1), 3-12 (2009).
    • 6. Wattam, A. R. & Christensen, B. M. Induced polypeptides associated with filarial worm refractoriness in Aedes aegypti . Proc. Natl. Acad. Sci. USA 89(14), 6502-6505 (1992).
    • 7. Christensen, B. M. & Severson, D. W. Biochemical & molecular basis of mosquito susceptibilty to Plasmodium and filarial nematodes. In Parasites & Pathogens of Insects 1st edn (eds Beckage, N., Thompson, S. N. & Federici, B. A.) 245-265 (California Academic Press Inc. 1993).
    • 8. Erickson, S. M. et al. Mosquito-parasite interactions can shape filariasis transmission dynamics and impact elimination programs. PLoS Negl. Trop. Dis. 7(9), 1-7 (2013).
    • 9. Dye, C. Does facilitation imply a threshold for the eradication of lymphatic filariasis? Parasitology Today , 8, 109-110 (1992).
    • 10. Bryan, J. H. & Southgate, B. A. Some observations on filariasis in Western Samoa aeftr mass administration of diethylcarbamazine. Trans. R. Soc. Trop. Med. Hyg. 70(1), 39-48 (1976).
    • 11. Southgate, B. A. & Bryan, J. H. Factors aefcting transmission of Wuchereria bancroift by anopheline mosquitoes. 4. Facilitation, limitation, proportionality and their epidemiological significance. Trans . R. Soc. Trop. Med. Hyg. 86, 523-530 (1992).
    • 12. Michael, E. eTh epidemiology of lymphatic filariasis control. In World Class Parasites: eTh Filaraie 1 st edn. (eds Rajan, T. V. & Klei, T.) pp 41-48 (Klumer Academic Publishers, 2002).
    • 13. Irvine, M. A. et al. Modelling strategies to break transmission of lymphatic filariasis -aggregation, adherence and vector competence greatly alter elimination. Parasit. Vectors. 8, 547 (2015).
    • 14. Michael, E. & Singh, B. K. Heterogenous dynamics, robustness/fragility trade-osf, and the eradication of the macroparasitic disease, lymphatic filariasis. BMC Medicine. 14(1) (2015)
    • 15. Hollingsworth, T. D. et al. Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasit. Vectors. 8(1), 630 (2015).
    • 16. Wekesa, J. W., Robert, S. C. & Mwangi, R. W. Efect of Plasmodium falciparum on blood feeding behaviour of naturally infected Anopheles mosquitoes in West Kenya. Am. J. Trop. Med. Hyg. 47(4), 484-488 (1992).
    • 17. Koella, J. C., Sorensen, F. L. & Anderson, R. The malaria parasite, Plasmodium falciparum , increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc Biol Sci. 265(1398), 763-768 (1998).
    • 18. Anderson, R. A., Koella, J. C. & Hurd, H. eTh eefct of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc. Biol. Sci. 266(1430), 1729-1733 (1999)
    • 19. Poulin, R. “Adaptive” changes in the behaviour of parasitized animals: A critical review. Int. J. Parasitol. 25(12), 1371-1383 (1995).
    • 20. Cator, L. J. et al. “Manipulation” without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. Proc. Biol. Sci. 280(1763) (2013).
    • 21. Koella, J. C. Stage-specific manipulation of a mosquito's host-seeking behaviour by the malaria parasite Plasmodium gallinaceum . Behav. Ecol. 13(6), 816-820 (2002).
    • 22. Takken, W. & Knols, B. G. J. Odour-mediated behaviour of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44, 131-137 (1999).
    • 23. Cator, L. J. et al. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential. Sci. Rep. 5, 11947 (2015).
    • 24. Styer, L. M., Carey, J. R., Wang, J. L. & Scott, T. W. Mosquitoes do senesce: departure from the paradigm of constant mortality. An. J. Trop. Med. Hyg. 76(1), 111-117 (2007).
    • 25. Rowley, W. A. & Graham, C. L. The eefct of age on the flight performance of female Aedes aegypti mosquitoes. J. Insect. Physiol. 14(5), 719-728 (1968).
    • 26. Ariani, C. V., Juneja, P., Smith, S., Tinsley, M. C. & Jiggins, F. M. Vector competence of Aedes aegypti mosquitoes for filarial nematodes is aefcted by age and nutrient limitation. Exp Gerontol . 61, 47-53 (2015).
    • 27. Wong, J., Stoddard, S. T., Astete, H., Morrison, A. C. & Scott, T. W. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl. Trop. Dis. 5(4) (2011).
    • 28. Hurd, H. Host fecundity reduction: A strategy for damage limitation? Trends Parasitol. 17(8), 363-368 (2001).
    • 29. Sylvestre, G., Gandini, M. & Maciel-de-Freitas, R. Age-dependent efects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behaviour, survival, oviposition success and fecundity. PLoS ONE 8(3) 1-8 (2013).
    • 30. Ferdig, M., Beerntsen, B., Spray, F. J., Li, J. & Christensen, B. M. Reproductive costs associated with resistance in a mosquito-filarial worm system. Am. J. Trop. Med. Hyg. 49(6), 756-762 (1993).
    • 31. Gaaboub, I. A. Observations on the basal follicle numbers developed per female of two strains of Aedes aegypti after being fed on hosts with diefrent levels of microfilariae of Brugia pahangi . J. Invertebr. Pathol. 28, 203-207 (1976).
    • 32. Hacker, C. eTh diefrential eefct of Plasmodium gallinacium on the fecundity of several strains of Aedes aegypti. J. Invertebr. Pathol. 18, 373-377 (1971).
    • 33. Gritfihs, K. G., Alworth, L. C., Harvey, S. B. & Michalski, M. L. Using an intravenous catheter to carry out abdominal lavage in the gerbil. Lab Animal. 39(5), 143-148 (2010).
    • 34. Bentley, M. D. & Day, J. F. Chemical Ecology and Behavioural Aspects of Mosquito Oviposition. Ann. Rev. Entomol. 34, 401-421 (1989).
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    62
    62%
  • No similar publications.

Share - Bookmark

Cite this article