LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
Molecules adsorbed on surfaces can show fascinating characteristics and properties. In particular the assembly of molecules into ordered arrays on surfaces is of great interest, whether one considers possible commercial applications or fundamental physical interactions. Specifically, the mediation of ordered molecular arrangements via hydrogen bonding yields many interesting structures. This thesis focusses primarily on the importance of hydrogen bonding between molecules on surfaces in ultra high vacuum (UHV), and how these interactions govern ordered phase formation. Scanning tunnelling microscopy is used to investigate the planar perylene derivative PTCDA on the hexagonal Ag-Si(111) (sqrt 3) * (sqrt 3)R30^o surface alone, with C_{60}, and with melamine. Interesting molecular architectures are observed including a square PTCDA arrangement, and a PTCDA-melamine hexagonal network which contains both stabilising hydrogen bonds and potentially repulsive interactions. Hydrogen bonding systems of pyridinecarboxylic acids on rutile TiO_2 have been studied using photoemission spectroscopy. Ordered films of isonicotinic acid were investigated using valence band photoemission, and an angular dependence is observed in valence band spectra as the angle between the sample and the incoming light is changed. Biisonicotinic acid was also studied on TiO_2 and on gold using core level photoemission to determine how it bonds to these surfaces; it is thought to chemisorb to both TiO_2 and gold through its carboxylic acid groups in an upright orientation. Some large or fragile molecules cannot be sublimed in vacuum for deposition as they fragment. Another research focus has been the development of a technique for depositing non-volatile molecules in vacuum directly from solution. Concepts of electrospray ionisation have been used in the development of a vacuum electrospray deposition system. The molecule is dissolved or suspended in solution and electrosprayed directly into a vacuum environment, with the result that molecules of interest are deposited on a sample without fragmentation or corruption. The samples may then be investigated with vacuum based techniques such as scanning tunnelling microscopy and photoemission spectroscopy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. de Feyter and F. C. de Schryver. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chemical Society Review, 32(6):139{150, 2003.
    • [2] J. V. Barth, G. Costantini, and K. Kern. Engineering atomic and molecular nanostructures at surfaces. Nature, 437(7059):671{679, 2005.
    • [3] F. Bartha, O. Kapuy, C. Kozmutza, and C. Van Alsenoy. Analysis of weakly bound structures: hydrogen bond and the electron density in a water dimer. Journal of Molecular Structure-TheoChem, 666:117{122, 2003.
    • [4] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature, 171(4356):737{738, 1953.
    • [5] D. Wang, L. J. Wan, Q. M. Xu, C. Wang, and C. L. Bai. Adlayer structures of pyrene and perylene on Cu(111): an in situ STM study. Surface Science, 478(1-2):L320{ L326, 2001.
    • [6] J. V. Barth, J. Weckesser, G. Trimarchi, M. Vladimirova, A. de Vita, C. Cai, H. Brune, P. GuÄnter, and K. Kern. Stereochemical e®ects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). Journal of the American Chemical Society, 124(27):7991{8000, 2002.
    • [7] J. V. Barth, J. Weckesser, C. Cai, P. GuÄnter, L. BuÄrgi, O. Jeandupeux, and K. Kern. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angewandte Chemie-International Edition, 39(7):1230{1234, 2000.
    • [8] J. Weckesser, A. de Vita, J. V. Barth, C. Cai, and K. Kern. Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Physical Review Letters, 87(9):096101, 2001.
    • [9] R. Otero, M. Schock nd L. M. Molina, E. Laegsgaard, I Stensgaard, B Hammer, and F. Besenbacher. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angewandte Chemie-International Edition, 44(15):2270{2275, 2005.
    • [10] H. Tanaka, T. Nakagawa, and T. Kawai. Two-dimensional self-assembly of DNA base molecules on Cu(111) surfaces. Surface Science, 364(2):L575{L579, 1996.
    • [11] M. Furukawa, H. Tanaka, K. Sugiura, Y. Sakata, and T. Kawai. Fabrication of molecular alignment at the speci¯c sites on Cu(111) surfaces using self-assembly phenomena. Surface Science, 445(1):L58 { L63, 2000.
    • [12] M. Bohringer, K. Morgenstern, W.-D. Schneider, and R. Berndt. Separation of a racemic mixture of two-dimensional molecular clusters by scanning tunneling microscopy. Angewande Chemie-International Edition, 38(6):821{823, 1999.
    • [13] M. Bohringer, K. Morgenstern, W-D Schneider, R. Berndt, F. Mauri, A. de Vita, and R. Car. Two dimensional self assembly of supramolecular clusters and chains. Physical Review Letters, 83(2):324{327, 1999.
    • [14] M. Bohringer, W.-D. Schneider, and R. Berndt. Two-dimensional self-assembly of supramolecular structures. Surface Review and Letters, 7(5-6):661{666, 2000.
    • [15] D. L. Keeling, N. S. Oxtoby, C. Wilson, M. J. Humphry, N. R. Champness, and P. H. Beton. Assembly and processing of hydrogen bond induced supramolecular nanostructures. Nano Letters, 3(1):9{12, 2003.
    • [16] S. Griessl, M. Lackinger, M. Edelwirth, M. Hietschold, and W.M. Heckl. Selfassembled two-dimensional molecular host-guest architectures from trimesic acid. Single Molecules, 3(1):25{31, 2002.
    • [17] A. Dmitriev, N. Lin, J. Weckesser, J. V. Barth, and K. J. Kern. Supramolecular assemblies of trimesic acid on a Cu(100) surface. Journal of Physical Chemistry B, 106(27):6907{6912, 2002.
    • [18] M. Lackinger, S. Griessl, W. A. Heckl, M. Hietschold, and G. W. Flynn. Self-assembly of trimesic acid at the liquid-solid interface - a study of solvent-induced polymorphism. Langmuir, 21(11):4984{4988, 2004.
    • [19] S. de Feyter, M. Larsson, N. Schuurmans, B. Verkuijl, G. Zoriniants, A. Gesquire, M. M. Abdel-Mottaleb, J. van Esch, B. L. Feringa, J. van Stam, and F. de Schryver. Supramolecular control of two-dimensional phase behavior. Chemistry - A European Journal, 9(5):1198 { 1206, 2003.
    • [20] S. de Feyter, A. Gesquiere, M. Klapper, K. Mullen, and F. C. de Schryver. Toward two-dimensional supramolecular control of hydrogen-bonded arrays: The case of isophthalic acids. Nano Letters, 3(11):1485{1488, 2003.
    • [21] L. M. A. Perdig ao, N. R. Champness, and P. H. Beton. Surface self-assembly of the cyanuric acid-melamine hydrogen bonded network. Chemical Communications, 5:538{540, 2006.
    • [22] G. M. Whitesides, J. P. Mathias, and C. T. Seto. Molecular self-assembly and nanochemistry - a chemical strategy for the synthesis of nanostructures. Science, 254(5036):1312{1319, 1991.
    • [23] C. T. Seto and G. M. Whitesides. Molecular self-assembly through hydrogen-bonding - supramolecular aggregates based on the cyanuric acid: melamine lattice. Journal of the Americal Chemical Society, 115(3):905{916, 1993.
    • [24] J. Lu, S. B. Lei, Q. D. Zeng, S. Z. Kang, C. Wang, L. J. Wan, and C. L. Bai. Templateinduced inclusion structures with copper(II) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks. Journal of Physical Chemistry B, 108(17):5161{5165, 2004.
    • [25] J. A. Theobald, N. S. Oxtoby, M. A. Phillips, N. R. Champness, and P. H. Beton. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature, 424(6952):1029{1031, 2003.
    • [26] J. A. Theobald, N. S. Oxtoby, N. R. Champness, P. H. Beton, and T. J. S. Dennis. Growth induced reordering of fullerene clusters trapped in a two-dimensional supramolecular network. Langmuir, 21(5):2038{2041, 2005.
    • [27] D. L. Keeling, M. J. Humphry, R. H. J. Fawcett, P. H. Beton, C. Hobbs, and K. Kantorovich. Bond breaking coupled with translation in rolling of covalently bound molecules. Physical Review Letters, 94(14):146104, 2005.
    • [28] L. M. A. Perdigao, E. W. Perkins, J. Ma, P. A. Staniec, B. L. Rogers, N. R. Champness, and P. H. Beton. Bimolecular networks and supramolecular traps on Au(111). Journal of Physical Chemistry, 110(25):12539{12542, 2006.
    • [29] C. Bobisch, Th. Wagner, A. Bannani, and R. MÄoller. Ordered binary monolayer composed of two organic molecules: Copper-phthalocyanine and 3,4,9,10- perylenetetra-carboxylic-dianhydride on Cu(111). Journal of Chemical Physics, 119(18):9804{ 9408, 2003.
    • [30] M. de Wild, S. Berner, H. Suzuki, H. Yanagi, D. Schlettwein, S. Ivan, A. Barato®, H.-J. GuÄntherodt, and T. A. Jung. A novel route to molecular self-assembly: Selfintermixed monolayer phases. ChemPhysChem, 3(10):881{885, 2002.
    • [31] G. Binnig and H. Rohrer. Scanning tunneling microscopy. IBM Journal of Research and Development, 30(4):355{369, 1986.
    • [32] R. Wiesendanger. Scanning Probe Microscopy and Spectroscopy: Methods and Applications. Cambridge University Press, 1 edition, 1994.
    • [38] M. Eremtchenko, J. A. Schaefer, and F. S. Tautz. Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature, 425(6958):602{605, 2003.
    • [48] A. Einstein. Generation and conversion of light with regard to a heuristic point of view. Annalen der Physik, 17(6):132{148, 1905.
    • [49] Spartan `02 Computational Chemistry package. http://www.wavefun.com/.
    • by Wavefunction, Inc., 2002.
    • [50] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millan, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Cli®ord, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, and J.A. Pople. Gaussian98. Computational Chemistry Program, 1998.
    • [51] J. M. Soler, E. Artacho, J. D. Gale, A. Garc¶³a, J. Junquera, P. Ordej¶on, and D. S¶anchez-Portal. The SIESTA method for ab initio order-N materials simulation. Journal Of Physics: Condensed Matter, 14(11):2745{2779, 2002.
    • [57] J. Schnadt, J. N. O'Shea, L. Patthey, J. Schiessling, J. Krempasky¶, M. Shi, N. Mºartensson, and P. A. BruÄhwiler. Alignment of valence photoemission, x-ray. absorption and substrate density of states for an adsorbate on a semiconductor surface. Physical Review B, 67:235420{235420, 2003.
    • [58] K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi. Structure analysis of Si(111)(7 £ 7) reconstructed surface by transmission electron di®raction. Surface Science, 164(2-3):367{392, 1985.
    • [59] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. 7 x 7 reconstruction on Si(111) resolved in real space. Physical Review Letters, 50(2):120{123, 1983.
    • [60] M. J. Butcher, J. W. Nolan, M. R. C. Hunt, P. H. Beton, L. Dunsch, P. Kuran, P. Georgi, and T. J. S. Dennis. Orientationally ordered island growth of higher fullerenes on Ag/Si(111)p3 £ p3R30±. Physical Review B, 64(19):195401, 2001.
    • [61] K. J. Wan, X. F. Lin, and J. Nogami. Surface reconstructions in the Ag/Si(111) system. Physical Review B, 47(20):13700{13723, 1993.
    • [62] T. Takahashi, S. Nakatani, N. Okamoto, T. Ishikawa, and S. Kikuta. A study of the Si(111)-square root 3 x square root 3 - Ag surface by transmission x-ray di®raction and x-ray di®raction topography. Surface Science, 242(1-3):54{58, 1991.
    • [63] U. Diebold. The surface science of TiO2. Surface Science Reports, 48(5-8):53{229, 2003.
    • [64] B. O'Regan and M. GrÄatzel. A low-cost, high-e±ciency solar cell based on dyesensitized colloidal TiO2 ¯lms. Nature, 353(6346):737{740, 1991.
    • [65] A. Hagfeldt and M. GrÄatzel. Molecular photovoltaics. Accounts of Chemical Research, 33(5):269{277, 2000.
    • [66] A. Hagfeldt and M. GrÄatzel. Light-induced redox reactions in nanocrystalline systems. Chemical Review, 95(1):49{68, 1995.
    • [67] M. GrÄatzel. Photoelectrochemical cells. Nature, 414(6861):338{344, 2001.
    • [68] M. K. Nazeeruddin and A. Kay and I. Rodicio and R. Humphry-Baker and E. MuÄller and P. Liska and N. Vlachopoulos and M. GrÄatzel. Conversion of light to electricity by cis-x2bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(ii) charge-transfer sensitizers (x = c1¡, br¡, i¡, cn¡, and scn¡) on nanocrystalline tio2 electrodes. Journal of the Americal Chemical Society, 115:6382{6390, 1993.
    • [69] J. Schnadt, P. A. BruÄhwiler, L. Patthey, J. N. O'Shea, S. SÄodergren, M. Odelius, R. Ahuja, O Karis, M. BÄassler, P. Persson, H. Siegbahn, S. Lunell, and N. Mºartensson. Experimental evidence for a sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature, 418(6898):620{623, 2002.
    • [71] P. Persson, S. Lunell, P. A. BruÄhwiler, J. Schnadt, S. SÄodergren, J. N. O'Shea, O. Karis, H. Siegbahn, N. MÄartensson, M. BÄassler, and L. Patthey. N1s x-ray absorption study of the bonding interaction of bi-isonicotinic acid adsorbed on rutile TiO2. Chemical Physics, 112(9):3945{3948, 2000.
    • [72] U. Diebold, J. Lehman, T. Mahmoud, M. Kuhn, G. Leonardelli, W. Hebenstreit, M. Schmid, and P. Vargad. Intrinsic defects on a TiO2(110) (1 £ 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surface Science, 411(1-2):137{153, 1998.
    • [73] J. Schnadt, J. Schiessling, J. N. O'Shea, S. M. Gray, L. Patthey, M. K-J. Johansson, M. Shi, J. Krempasky¶, J. Aºhlund, P. G. Karlsson, P. Persson, N. Mºartensson, and P. A. BruÄhwiler. Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2 I: XAS and STM. Surface Science, 540(1):39{54, 2003.
    • [74] H. Onishi and Y. Iwasawa. Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surface Science, 313(1-2):L783{L789, 1994.
    • [75] M. Li, W. Hebenstreit, L. Gross, U. Diebold, M. A. Henderson, D. R. Jennison, P. A.
    • [85] Q. Chen, T. Rada, Th. Bitzer, and N. V. Richardson. Growth of PTCDA crystals on H:Si(111) surfaces. Surface Science, 547(3):385{393, 2003.
    • [86] N. Nicoara, O. Custance, D. Granados, J. M. Garc¶³a, J. M. G¶omez-Rodr¶³guez, A. M. Bar¶o, and J. M¶endez. Scanning tunnelling microscopy and spectroscopy on organic PTCDA ¯lms deposited on sulfur passivated GaAs(001). Journal of Physics: Condensed Matter, 15(38):S2619 S2629, 2003.
    • [87] Th. Wagner, A. Bannani, C. Bobisch, H. Karacuban, M. Stohr, M. Gabriel, and R. Moller. Growth of 3,4,9,10-perylenetetracarboxylic-dianhydride crystallites on noble metal surfaces. Organic Electronics, 5(1-3):35{43, 2004.
    • [88] E. Umbach, M. Sokolowski, and R. Fink. Substrate-interaction, long-range order, and epitaxy of large organic adsorbates. Applied Physics A-Materials Science and Processing, 63(6):565{576, 1996.
    • [89] T. Schmitz-HuÄbsch, F. Sellam, R. Staub, M. Torker, T. Fritz, C. KuÄbel, K. MuÄllen, and K. Leo. Direct observation of organic-organic heteroepitaxy: perylenetetracarboxylic-dianhydride on hexa-peri benzocoronene on highly ordered pyrolytic graphite. Surface Science, 445(2-3):358{367, 2000.
    • [90] T. Schmitz-HuÄbsch, T. Fritz, F. Sellam, R. Staub, and K. Leo. Epitaxial growth of 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111): A STM and RHEED study. Physical Review B, 55(12):7972{7976, 1997.
    • [91] B. Krause, A. C. DuÄrr, K. A. Ritley, F. Schreiber, H. Dosch, and D. Smilgies. On the coexistence of di®erent polymorphs in organic epitaxy: alpha and beta phase of PTCDA on Ag(111). Applied Surface Science, 175-176:332{336, 2001.
    • [92] U. Stahl, D. Gador, A. Soukopp, R. Fink, and E. Umbach. Coverage-dependent superstructures in chemisorbed NTCDA monolayers: a combined LEED and STM study. Surface Science, 414(3):423{434, 1998.
    • [93] H. W. Kroto. Buckminsterfullerene: The celestial sphere that fell to earth. Angewandte Chemie-International Edition in English, 31:111{129, 1992.
    • [94] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Hu®man. Solid C60 - a new form of carbon. Nature, 347(6291):354{358, 1990.
    • [95] K. Tsuchie, T. Nagao, and S. Hasegawa. Structure of C60 layers on the Si(111) ¡ p3 £ p3-Ag surface. Physical Review B, 60(15):11131{11136, 1999.
    • [96] M. D. Upward, P. Moriarty, and P. H. Beton. Double domain ordering and selective removal of C60 on Ag-Si(111)p3 £ p3R30±. Physical Review Letters, 56(4):R1704{ R1707, 1997.
    • [97] J. C. Swarbrick, J. Ma, J. A. Theobald, N. S. Oxtoby, J. N. O'Shea, N. R. Champness, and P. H. Beton. Square, hexagonal and row phases of PTCDA and PTCDI on AgSi(111)p3 £ p3R30±. Journal of Physical Chemistry B, 109(25):12167{12174, 2005.
    • [112] F. Takusagawa and A. Shimada. Isonicotinic acid. Acta Crystallography Section B-Structural Science, 32:1925{1927, 1976.
    • [113] P. J. Hardman, G. N. Raikar, C. A. Muryn, G. van der Laan, P. L. Wincott, G. Thornton, D. W Bullett, and P. A. D. M. A. Dale. Valence-band structure of TiO2 along the ¡ ¡ ¢ ¡ X and ¡ ¡ § ¡ M directions. Physical Review B, 49(22):7170{7177, 1994.
    • [114] H. P. Steinruck. Angle-resolved photoemission studies of adsorbed hydrocarbons. Journal of Physics - Condensed Matter, 8(36):6465{6509, 1996.
    • [115] U. Gelius. Recent progress in ESCA studies of gases. Journal of Electron Spectroscopy and Related Phenomena, 5(NOV-D):985{1057, 1974.
    • [116] B. Xu, B. Varughese, D. Evans, and J. Reutt-Robey. Morphology selected molecular architechture: acridine carboxylic acid monolayers on Ag(111). Journal of Physical Chemistry B, 110(3):1271{1276, 2006.
    • [117] R. J. Ellingson, J. B. Asbury, S. Ferrere, N. H. Ghosh, J. R. Sprague, T. Q. Lian, and A. J. Nozik. Dynamics of electron injection in nanocrystalline titanium dioxide ¯lms sensitized with [Ru(4,4'-dicarboxy-2,2'-bipyridine)(2)(NCS)(2)] by infrared transient absorption. Journal of Physical Chemistry B, 102(34):6455{6458, 1998.
    • [118] P. J. Moriarty, M. R. D. Taylor, and M. Brust. Nanostructured cellular networks. Physical Review Letters, 89(24):248303, 2002.
    • [119] J. B. Fenn, M. Mann, C. K. Meng, F. S. Wong, and C. M. Whitehouse. Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926):64{71, 1989.
    • [120] M. L. Vestal. Methods of ion generation. Chemical Review, 101(2):361{375, 2001.
    • [121] J. B. Fenn. Nobel lecture: Electrospray wings for molecular elephants, at http://www.nobel.se/chemistry/laureates/2002/fenn-lecture.pdf. 8/12/02, 2002.
    • [122] E. W. Sheehan, R. C. Willoughby, J. A. Jarrell, and D. M. Strand. Patent for electrospray for chemical analysis. Patent No.US 6,278,111 B, 2001.
    • [123] B. K. Ku and S. S. Kim. Electrohydrodynamic spraying characteristics of glycerol solutions in vacuum. Journal of Electrostatics, 57(2):109{128, 2003.
    • [124] S. Rauschenbach, F. L. Stadler, E. Lunedei, N. Malinowski, S. Koltsov, G. Costantini, and K. Kern. Electrospray ion beam deposition of clusters and biomolecules. Small, 2(4):540{547, 2006.
    • [125] S. J. Gaskell. Electrospray: Principles and practice. Journal of Mass Spectrometry, 32(7):677{688, 1997.
    • [136] R. B. Cole. Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 35(7):763{772, 2000.
    • [137] J. V. Iribarne and B. A. Thompson. On the evaporation of small ions from charged droplets. The Journal of Chemical Physics, 64(6):2287{2294, 1976.
    • [138] J. V. Iribarne and B. A. Thompson. Field induced ion evaporation from liquid surfaces at atmospheric pressure. The Journal of Chemical Physics, 71(11):4451{4463, 1979.
    • [139] M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, and M. B. Alice. Molecular beams of macroions. Journal of Chemical Physics, 49(5):2240{2249, 1968.
    • [140] G. Schmelzeisen-Redeker, L. Butfering, and F. W. Rollgen. Desolvation of ions and molecules in thermospray mass-spectrometry. International Journal of Mass Spectrometry and Ion Processes, 90(2):139{150, 1989.
    • [146] D. R. Smith, G. Sagerman, and T. D. Wood. Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer. Review of Scienti¯c Instruments, 74(10):4474{4477, 2003.
    • [148] Y. Ishihama, H. Katayama, N. Asakawa, and Y. Oda. Highly robust stainless steel tips as microelectrospray emitters. Rapid Communications in Mass Spectrometry, 16(10):913{918, 2002.
    • [150] B. K. Ku and S. S. Kim. Electrospray characteristics of highly viscous liquids. Journal of Aerosol Science, 33:1361{1378, 2002.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    63
    63%
  • No similar publications.

Share - Bookmark

Cite this article