Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yee, A.W.; Moulin, M.; Breteau, N.; Haertlein, M.; Mitchell, E.P.; Cooper, J.B.; Boeri Erba, E.; Forsyth, V.T. (2016)
Publisher: Wiley
Journal: Angewandte Chemie International Edition
Languages: English
Types: Article
Subjects: amyloid proteins, deuteration, Communications, QC, QH301, transthyretin, isotope effects, Mass Spectrometry, native mass spectrometry, Communication

Classified by OpenAIRE into

mesheuropmc: nutritional and metabolic diseases, endocrine system
Abstract It is well established that the formation of transthyretin (TTR) amyloid fibrils is linked to the destabilization and dissociation of its tetrameric structure into insoluble aggregates. Isotope labeling is used for the study of TTR by NMR, neutron diffraction, and mass spectrometry (MS). Here MS, thioflavin T fluorescence, and crystallographic data demonstrate that while the X‐ray structures of unlabeled and deuterium‐labeled TTR are essentially identical, subunit exchange kinetics and amyloid formation are accelerated for the deuterated protein. However, a slower subunit exchange is noted in deuterated solvent, reflecting the poorer solubility of non‐polar protein side chains in such an environment. These observations are important for the interpretation of kinetic studies involving deuteration. The destabilizing effects of TTR deuteration are rather similar in character to those observed for aggressive mutations of TTR such as L55P (associated with familial amyloid polyneuropathy).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. M. Johnson, R. L. Wiseman, Y. Sekijima, N. S. Green, S. L. Adamski-werner, J. W. Kelly, Acc. Chem. Res. 2005, 38, 911 - 921.
    • [2] S. K. Palaninathan, Curr. Med. Chem. 2012, 19, 2324 - 2342.
    • [3] A. W. P. Fitzpatrick, G. T. Debelouchina, M. J. Bayro, D. K. Clare, M. A. Caporini, V. S. Bajaj, C. P. Jaroniec, L. Wang, V. Ladizhansky, S. A. M ller, et al., Proc. Natl. Acad. Sci. USA 2013, 110, 5468 - 5473.
    • [4] T. Yokoyama, M. Mizuguchi, Y. Nabeshima, K. Kusaka, T. Yamada, T. Hosoya, T. Ohhara, K. Kurihara, K. Tomoyori, I. Tanaka, et al., J. Struct. Biol. 2012, 177, 283 - 290.
    • [5] M. Haupt, M. P. Blakeley, S. J. Fisher, S. A. Mason, J. B. Cooper, E. P. Mitchell, V. T. Forsyth, IUCrJ 2014, 1, 429 - 438.
    • [6] J. B. Artero, M. H rtlein, S. McSweeney, P. Timmins, Acta Crystallogr. Sect. D 2005, 61, 1541 - 1549.
    • [7] M. Haertlein, M. Moulin, J. M. Devos, V. Laux, O. Dunne, V. T. Forsyth, Methods Enzymol. 2016, 566, 113 - 157.
    • [8] S. J. Cooper, J. Raftery, J. R. Helliwell, D. Brockwell, D. Attwood, J. Barber, Chem. Commun. 1998, 1063 - 1064.
    • [9] J. White, D. Heß, J. Raynes, V. Laux, M. Haertlein, T. Forsyth, A. Jeyasingham, Eur. Biophys. J. 2015, 44, 367 - 371.
    • [10] M. P. Blakeley, P. Langan, N. Niimura, A. Podjarny, Curr. Opin. Struct. Biol. 2008, 18, 593 - 600.
    • [11] M. G. Cuypers, S. A. Mason, M. P. Blakeley, E. P. Mitchell, M. Haertlein, V. T. Forsyth, Angew. Chem. Int. Ed. 2013, 52, 1022 - 1025; Angew. Chem. 2013, 125, 1056 - 1059.
    • [12] S. J. Fisher, J. R. Helliwell, Acta Crystallogr. Sect. A 2008, 64, 359 - 367.
    • [13] E. Boeri Erba, C. Petosa, Protein Sci. 2015, 24, 1176 - 1192.
    • [14] C. A. Keetch, E. H. C. Bromley, M. G. McCammon, N. Wang, J. Christodoulou, C. V. Robinson, J. Biol. Chem. 2005, 280, 41667 - 41674.
    • [15] G. Piszczek, J. C. Lee, N. Tjandra, C. R. Lee, Y. J. Seok, R. L. Levine, A. Peterkofsky, Arch. Biochem. Biophys. 2011, 507, 332 - 342.
    • [16] F. Meilleur, J. Contzen, D. A. A. Myles, C. Jung, Biochemistry 2004, 43, 8744 - 8753.
    • [17] D. Brockwell, L. Yu, S. Cooper, S. McCleland, a Cooper, D. Attwood, S. J. Gaskell, J. Barber, Protein Sci. 2001, 10, 572 - 580.
    • [18] A. Hattori, H. L. Crespi, J. J. Katz, Biochemistry 1965, 4, 1225 - 1238.
    • [19] A. Hattori, H. L. Crespi, J. J. Katz, Biochemistry 1965, 4, 1213 - 1225.
    • [20] M. Jasnin, M. Tehei, M. Moulin, M. Haertlein, G. Zaccai, Eur. Biophys. J. 2008, 37, 613 - 617.
    • [21] Y. Efimova, S. Haemers, B. Wierczinski, W. Norde, A. van Well, Biopolymers 2006, 85, 264 - 273.
    • [22] B. Verheyden, K. Andries, B. Rombaut, Vaccine 2001, 19, 1899 - 1905.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok