LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: University of Warwick. Department of Computer Science
Languages: English
Types: Other
Subjects: QA
Two natural classes of counting problems that are interreducible under approximation-preserving reductions are: (i) those that admit a particular kind of efficient approximation algorithm known as an "FPRAS," and (ii) those that are complete for #P with respect to approximation-preserving reducibility. We describe and investigate not only these two classes but also a third class, of intermediate complexity, that is not known to be identical to (i) or (ii). The third class can be characterised as the hardest problems in a logically defined subclass of #P.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article