Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Duncan, J.; Hayakawa, S.; Osaka, A.; MacDonald, J.F.; Hanna, J.V.; Skakle, J.M.S.; Gibson, I.R. (2014)
Publisher: Elsevier BV
Journal: Acta Biomaterialia
Languages: English
Types: Article
Subjects: Molecular Biology, Biotechnology, Biomedical Engineering, Biochemistry, Biomaterials
High-purity (SupT) and reagent-grade (ST), stoichiometric and silicate-containing α-tricalcium phosphate (α-TCP: ST0/SupT0 and Si-TCP x = 0.10: ST10/SupT10) were prepared by solid-state reaction based on the substitution mechanism Ca3(PO4)(2-x)(SiO4)x. Samples were determined to be phase pure by X-ray diffraction (XRD), and Rietveld analysis performed on the XRD data confirmed inclusion of Si in the α-TCP structure as determined by increases in unit cell parameters; particularly marked increases in the b-axis and β-angle were observed. X-ray fluorescence (XRF) confirmed the presence of expected levels of Si in Si-TCP compositions as well as significant levels of impurities (Mg, Al and Fe) present in all ST samples; SupT samples showed both expected levels of Si and a high degree of purity. Phosphorus (31P) magic-angle-spinning solid-state nuclear magnetic resonance (MAS NMR) measurements revealed that the high-purity reagents used in the synthesis of SupT0 can resolve the 12 expected peaks in the 31P spectrum of α-TCP compared to the low-purity ST0 that showed significant spectral line broadening; line broadening was also observed with the inclusion of Si which is indicative of induced structural disorder. Silicon (29Si) MAS NMR was also performed on both Si-TCP samples which revealed Q0 species of Si with additional Si Q1/Q2 species that may indicate a potential charge-balancing mechanism involving the inclusion of disilicate groups; additional Q4 Si species were also observed, but only for ST10. Heating and cooling rates were briefly investigated by 31P MAS NMR which showed no significant line broadening other than that associated with the emergence of β-TCP which was only realised with the reagent-grade sample ST0. This study provides an insight into the structural effects of Si-substitution in α-TCP and could provide a basis for understanding how substitution affects the physicochemical properties of the material.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Hench L. J Am Ceram Soc 1998;81:1705-27.
    • [2] Kamitakahara M, Kurauchi T, Tanihara M, Loku K, Ohtsuki C. Key Eng Mater 2008;361-363(I):59-62.
    • [3] Mathew M, Schroeder LW, Dickens B, Brown WE. Acta Cryst Sec B 1977;33:1325-33.
    • [4] Yashima M, Sakai A. Chem Phys Lett 2003;372:779-83.
    • [5] Bohner M, Lemaitre J, Legrand A, De la Caillerie J-B, Belgrand P. J Mater Sci Mater Med 1996;7:457-63.
    • [6] Langstaff S, Sayer M, Smith T, Pugh S. Biomaterials 2001;22:135-50.
    • [7] Durucan C, Brown P. J Mater Sci Mater Med 2000;11:365-70.
    • [8] Stepuk A, Veresov A, Putlyaev V. J Phys Condens Matter 2007;19.
    • [9] Camiré C, Saint-Jean S, Mochales C, Nevsten P, Wang J-S, Lid- gren L, McCarthy I, Ginebra M-P. J Biomed Mater Res B 2006;76:424-31.
    • [10] Ogiso M, Tabata T, Ichijo T, Borgese D. J Long-Term Eff Med Imp 1992;2:235-47.
    • [11] Langstaff S, Sayer M, Smith TJN, Pugh SM. Biomaterials 2001;22:135-50.
    • [12] Mastrogiacomo M, Papadimitropoulos A, Cedola A, Peyrin F, Giannoni P, Pearce SG, Alini M, Giannini C, Guagliardi A, Cancedda R. Biomaterials 2007;28:1376-84.
    • [13] Kannan S, Ventura J, Ferreira J. Ceram Int 2007;33:637-41.
    • [14] Enderle R, Gotz-Neunhoeffer F, Göbbels M, Müller F, Greil P. Biomaterials 2005;26:3379-84.
    • [15] Reid J, Tuck L, Sayer M, Fargo K, Hendry J. Biomaterials 2006;27:2916-25.
    • [16] Reid J, Pietak A, Sayer M, Dunfield D, Smith TJN. Biomaterials 2005;26:2887-97.
    • [17] Langstaff S, Sayer M, Smith T, Pugh S, Hesp SAM, Thompson WT. Biomaterials 1999;20:1727-41.
    • [18] Massie I, Skakle J, Gibson I. Key Eng Mater 2008;361-363(I):67-70.
    • [19] Pietak A, Reid J, Stott M, Sayer M. Biomaterials 2007;28:4023-32.
    • [20] Reid J, Fargo K, Hendry J, Sayer M. Mater Lett 2007;61:3851-4.
    • [21] Carlisle E. J Nutr 1980;110:1046-56.
    • [22] Carlisle E. J Nutr 1980;110:352-9.
    • [23] Carlisle E. Science 1972;178:619-21.
    • [24] Patel N, Best S, Bonfield W, Gibson I, Hing K, Damien E, et al. J Mater Sci Mater Med 2002;13:1199-206.
    • [25] Patel N, Brooks R, Clarke M, Lee P, Rushton N, Gibson I, et al. J Mater Sci Mater Med 2005;16:429-40.
    • [26] Gibson IR, Best SM, Bonfield W. J Am Ceram Soc 2002;85:2771-7.
    • [27] Mestres G, Le Van C, Ginebra M-P. Acta Biomater 2012;8:1169-79.
    • [28] Camiré C, Gbureck U, Hirsiger W, Bohner M. Biomaterials 2005;26:2787-94.
    • [29] Duncan J, MacDonald JF, Hanna JV, Shirosaki Y, Hayakawa S, Osaka A, Skakle JMS, Gibson IR. Mater Sci Eng C 2013;34:123-9.
    • [30] Mackay AL. Acta Cryst 1953;6:743-4.
    • [31] Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G. Magn Reson Chem 2002;40:70-6.
    • [32] Yashima M, Kawaike Y, Tanaka M. J Am Ceram Soc 2007;90:272-4.
    • [33] Moran G, Howe RF. Nuclear Magnetic Resonance of Geological Materials and Glasses. Encycl Anal Chem 2006.
    • [34] Mägi M, Lippmaa E, Samoson A, Engelhardt G, Grimmer A-R. J Phys Chem 1984;88:1518-22.
    • [35] Lippmaa E, Magi M, Samoson A, Engelhardt G, Grimmer AR. J Am Chem Soc 1980;102:4889-93.
    • [36] Gasqu'eres G, Bonhomme C, Maquet J, Babonneau F, Hayakawa S, Kanaya T, Osaka A. Magn Reson Chem 2008;46:342-6.
    • [37] Rawal A, Wei X, Akinc M, Schmidt-Rohr K. Chem Mater 2008;20:2583-91.
    • [38] Gillespie P, Wu G, Sayer M, Stott M. J Mater Sci Mater Med 2010;21:99-108.
    • [39] Sayer M, Stratilatov A, Reid J, Calderin L, Stott M, Yin X, et al. Biomaterials 2003;24:369-82.
    • [40] Gomes S, Renaudin G, Mesbah A, Jallot E, Bonhomme C, Babon- neau F, Nedelec J-M. Acta Biomater 2010;6:3264-74.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article