Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Anderson, Bruce T.; Lintner, Benjamin R.; Langenbrunner, Baird; Neelin, J. David; Hawkins, Ed; Syktus, Jozef (2015)
Publisher: American Geophysical Union
Languages: English
Types: Article
Pronounced intermodel differences in the projected response of land surface precipitation (LSP) to future anthropogenic forcing remain in the Coupled Model Intercomparison Project Phase 5 model integrations. A large fraction of the intermodel spread in projected LSP trends is demonstrated here to be associated with systematic differences in simulated sea surface temperature (SST) trends, especially the representation of changes in (i) the interhemispheric SST gradient and (ii) the tropical Pacific SSTs. By contrast, intermodel differences in global mean SST, representative of differing global climate sensitivities, exert limited systematic influence on LSP patterns. These results highlight the importance to regional terrestrial precipitation changes of properly simulating the spatial distribution of large-scale, remote changes as reflected in the SST response to increasing greenhouse gases. Moreover, they provide guidance regarding which region-specific precipitation projections may be potentially better constrained for use in climate change impact assessments.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, M. R., and W. J. Ingram (2002), Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224-232.
    • Alley, R. B., et al. (2003), Abrupt climate change, Science, 299, 2005-2010, doi:10.1126/science.1081056.
    • Anderson, B. T. (2003), Tropical Pacific sea-surface temperatures and preceding sea-level pressure anomalies in the subtropical North Pacific, J. Geophys. Res., 108(D23), 4732, doi:10.1029/2003JD003805.
    • Anderson, B. T., C. Reifen, and R. Toumi (2009), Consistency in global climate change model predictions of regional precipitation trends, Earth Interact., 13, 1-23, doi:10.1175/2009EI273.1.
    • Barnett, T. P., and R. Preisendorfer (1987), Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis, Mon. Weather Rev., 15, 1825-1850.
    • Bretherton, C. S., C. Smith, and J. M. Wallace (1992), An intercomparison of methods for finding coupled patterns in climate data, J. Clim., 5, 541-560.
    • Cherry, S. (1996), Singular value decomposition analysis and canonical correlation analysis, J. Clim., 9, 2003-2009.
    • Chiang, J. C., and C. M. Bitz (2005), Influence of high latitude ice cover on the marine intertropical convergence zone, Clim. Dyn., 25, 477-496, doi:10.1007/s00382-005-0040-5.
    • Chou, C., J. D. Neelin, J.-Y. Tu, and C.-T. Chen (2006), Regional tropical precipitation change mechanisms in ECHAM4/OPYC3 under global warming, J. Clim., 19(17), 4207-4223, doi:10.1175/JCLI3858.1.
    • Deser, C., A. Phillips, V. Bourdette, and H. Teng (2012a), Uncertainty in climate change projections: The role of internal variability, Clim. Dyn., 38, 527-546.
    • Deser, C., A. S. Phillips, R. A. Tomas, Y. M. Okumura, M. A. Alexander, A. Capotondi, J. D. Scott, Y.-O. Kwon, and M. Ohba (2012b), ENSO and Pacific decadal variability in the Community Climate System Model version 4, J. Clim., 25, 2622-2651, doi:10.1175/JCLI-D-11-00301.1.
    • Entekhabi, D., et al. (2010), The soil moisture active passive (SMAP) mission, Proc. IEEE, 98, 704-716.
    • Frierson, D. M. W., and Y.-T. Hwang (2012), Extratropical influence on ITCZ shifts in slab ocean simulations of global warming, J. Clim., 25, 720-733, doi:10.1175/JCLI-D-11-00116.1.
    • Frierson, D. M. W., Y.-T. Hwang, N. S. Fučkar, R. Seager, S. M. Kang, A. Donohoe, E. A. Maroon, X. Liu, and D. S. Battisti (2013), Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere, Nat. Geosci., 6, 940-944, doi:10.1038/ngeo1987.
    • Gent, P. R., et al. (2011), The Community Climate System Model version 4, J. Clim., 24, 4973-4991.
    • Giannini, A., R. Saravanan, and P. Chang (2003), Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales, Science, 302, 1027-1030.
    • Giorgi, F. (2005), Climate change prediction, Clim. Change, 73, 239-265.
    • Graham, N. E., J. Michaelsen, and T. P. Barnett (1987), An investigation of the El Niño-Southern Oscillation cycle with statistical models: 1. Predictor field characteristics, J. Geophys. Res., 92, 14,251-14,270, doi:10.1029/JC092iC13p14251.
    • He, J., B. J. Soden, and B. Kirtman (2014), The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming, Geophys. Res. Lett., 41, 2614-2622, doi:10.1002/2014GL059435.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • NSF | Studies in the Climate Dyna...
  • NSF | Controls on South Pacific C...

Cite this article