LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Society for Industrial and Applied Mathematics
Languages: English
Types: Article
Subjects:
Emulation, mimicry, and herding behaviors are phenomena that are observed when multiple social groups interact. To study such phenomena, we consider in this paper a large population of homogeneous social networks. Each such network is characterized by a vector state, a vector-valued controlled input and a vector-valued exogenous disturbance. The controlled input of each network is to align its state to the mean distribution of other networks’ states in spite of the actions of the disturbance. One of the contributions of this paper is a detailed analysis of the resulting mean field game for the cases of both polytopic and L2 bounds on controls and disturbances. A second contribution is the establishment of a robust mean-field equilibrium, that is, a solution including the worst-case value function, the state feedback best-responses for the controlled inputs and worst-case disturbances, and a density evolution. This solution is characterized by the property that no player can benefit from a unilateral deviation even in the presence of the disturbance. As a third contribution, microscopic and macroscopic analyses are carried out to show convergence properties of the population distribution using stochastic stability theory.

Share - Bookmark

Cite this article