LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Meteorological Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
There is a vast amount of information about the atmosphere available from instruments on board satellites. One example is the Infrared Atmospheric Sounding Interferometer (IASI) instrument, which measures radiances emitted from Earth’s atmosphere and surface in 8461 channels. It is difficult to transmit, store, and assimilate such a large amount of data. A practical solution to this has been to select a subset of a few hundred channels based on those that contain the most useful information.\ud \ud Different measures of information content for objective channel selection have been suggested for application to variational data assimilation. These include mutual information and the degrees of freedom for signal. To date, the calculation of these measures of information content has been based on the linear theory that is at the heart of operational variational data assimilation. However, the retrieval of information about the atmosphere from the satellite radiances can be highly nonlinear.\ud \ud Here, a sampling method for calculating the mutual information that is free from assumptions about the linearity of the relationship between the observed radiances and the state variables is examined. It is found that large linearization errors can indeed lead to large discrepancies in the value of mutual information. How this new estimate of information content can be used in channel selection is addressed, with particular attention given to the efficiency of the new method. It is anticipated that accounting for the nonlinearity in the channel selection will be beneficial when using nonlinear data assimilation methods currently in development.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bishop, C., 2006: Pattern Recognition and Machine Learning. Springer, 738 pp.
    • Burnam, K. P., and D. R. Anderson, 2002: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer, 488 pp.
    • Chevallier, F., P. Lopez, A. M. Tompkins, M. Janisková, and E. Moreau, 2004: The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quart. J. Roy. Meteor. Soc., 130, 917-932, doi:10.1256/qj.03.113.
    • Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133, 1977-1991, doi:10.1002/qj.178.
    • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367- 1387, doi:10.1002/qj.49712051912.
    • Cover, T. M., and J. A. Thomas, 1991: Elements of Information Theory. Wiley Series in Telecommunications, John Wiley and Sons, 542 pp.
    • Eyre, J. R., 1989: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS. Quart. J. Roy. Meteor. Soc., 115, 1001-1026, doi:10.1002/qj.49711548902.
    • Fowler, A. M., and P. J. Van Leeuwen, 2013: Measures of observation impact in data assimilation: The effect of a nonGaussian measurement error. Tellus, 65, 20035, doi:10.3402/ tellusa.v65i0.20035.
    • Gorden, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc., 144, 107-113, doi:10.1049/ip-f-2.1993.0015.
    • Hocking, J., P. Rayer, R. Saunders, M. Marticardi, A. Geer, and P. Brunel, 2011: RTTOV v10 users guide. NWP SAF Tech. Rep. NWPSAF-MO-UD-023, 92 pp. [Available online at http://nwpsaf.eu/oldsite/deliverables/rtm/docs_rttov10/users_ guide_10_v1.5.pdf.]
    • Hoteit, I., X. Luo, and D.-T. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528-542, doi:10.1175/2011MWR3640.1.
    • Kim, S., G. L. Eyink, J. M. Restrepo, F. J. Alexander, and G. Johnson, 2003: Ensemble filtering for nonlinear dynamics. Mon. Wea. Rev., 131, 2586-2594, doi:10.1175/1520-0493(2003)131,2586: EFFND.2.0.CO;2.
    • Lui, J. S., and R. Chen, 1998: Sequential Monte Carlo methods for dynamical systems. J. Amer. Stat. Assoc., 90, 567-576, doi:10.2307/2669847.
    • Musso, C., N. Oudjane, and F. Le Gland, 2001: Improving regularized particle filters. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer, 247-271.
    • Pavelin, E. G., S. J. English, and J. R. Eyre, 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134, 737-749, doi:10.1002/qj.243.
    • Rabier, F., N. Fourrié, D. Chafäi, and P. Prunet, 2002: Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances. Quart. J. Roy. Meteor. Soc., 128, 1011- 1027, doi:10.1256/0035900021643638.
    • Rodgers, C. D., 1996: Information content and optimisation of high spectral resolution measurements. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 2830), 136-147, doi:10.1117/12.256110.
    • --, 2000: Inverse Methods for Atmospheric Sounding. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific Publishing, 256 pp.
    • Salby, M. L., 1996: Fundamentals of Atmospheric Physics. Academic Press, 627 pp.
    • Smith, K. W., 2007: Cluster ensemble Kalman filter. Tellus, 59A, 749-757, doi:10.1111/j.1600-0870.2007.00246.x.
    • Tamminen, J., and E. Kyrölä, 2001: Bayesian solution for nonlinear and non-Gaussian inverse problems by Markov chain Monte Carlo method. J. Geophys. Res., 106, 14 377-14 390, doi:10.1029/2001JD900007.
    • Van Leeuwen, P. J., 2003: A variance-minimizing filter for largescale applications. Mon. Wea. Rev., 131, 2071-2084, doi:10.1175/1520-0493(2003)131,2071:AVFFLA.2.0.CO;2.
    • --, 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089-4114, doi:10.1175/2009MWR2835.1.
    • --, 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 1991-1996, doi:10.1002/qj.699.
    • --, 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. Comput. Fluids, 46, 52-58, doi:10.1016/ j.compfluid.2010.11.011.
    • Ventress, L., and A. Dudhia, 2014: Improving the selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 140, 2111-2118, doi:10.1002/qj.2280.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article