Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Maxted, P. F. L.; Anderson, D. R.; Doyle, A. P.; Gillon, M.; Harrington, J.; Iro, N.; Jehin, E.; Lafrenière, D.; Smalley, B.; Southworth, J. (2012)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: QB, QC, Astrophysics - Earth and Planetary Astrophysics, : Aérospatiale, astronomie & astrophysique [Physique, chimie, mathématiques & sciences de la terre], : Space science, astronomy & astrophysics [Physical, chemical, mathematical & earth Sciences]

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Solar and Stellar Astrophysics
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years. Peer reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Agol E., Cowan N. B., Knutson H. A., Deming D., Steffen J. H., Henry G. W., Charbonneau D., 2010, ApJ, 721, 1861
    • Anderson D. R., Smith A. M. S., Lanotte A. A., Barman T. S., Collier Cameron A., Campo C. J., Gillon M., Harrington J., Hellier C., Maxted P. F. L., Queloz D., Triaud A. H. M. J., Wheatley P. J., 2011, MNRAS, 416, 2108 Arras P., Burkart J., Quataert E., Weinberg N. N., 2012, MNRAS, 422, 1761
    • Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
    • Ballard S., Charbonneau D., Deming D., Knutson H. A., Christiansen J. L., Holman M. J., Fabrycky D., Seager S., A'Hearn M. F., 2010, PASP, 122, 1341 Barnes S. A., 2007, ApJ, 669, 1167 Beaulieu J. P., Kipping D. M., Batista V., Tinetti G., Ribas I., Carey S., Noriega-Crespo J. A., Griffith C. A., Campanella G., Dong S., Tennyson J., Barber R. J., Deroo P., Fossey S. J., Liang D., Swain M. R., Yung Y., Allard N., 2010, MNRAS, 409, 963
    • Beerer I. M., Knutson H. A., Burrows A., Fortney J. J., Agol E., Charbonneau D., Cowan N. B., Deming D., Desert J., Langton J., Laughlin G., Lewis N. K., Showman A. P., 2011, ApJ, 727, 23
    • Bruntt H., Bedding T. R., Quirion P.-O., Lo Curto G., Carrier F., Smalley B., Dall T. H., Arentoft T., Bazot M., Butler R. P., 2010, MNRAS, 405, 1907 Bruntt H., De Cat P., Aerts C., 2008, A&A, 478, 487 Bruntt H., Deleuil M., Fridlund M., Alonso R., Bouchy F., Hatzes A., Mayor M., Moutou C., Queloz D., 2010, A&A, 519, A51
    • Burrows A., Budaj J., Hubeny I., 2008, ApJ, 678, 1436 Carter J. A., Winn J. N., 2009, ApJ, 704, 51 Charbonneau D., Allen L. E., Megeath S. T., Torres G., Alonso R., Brown T. M., Gilliland R. L., Latham D. W., Mandushev G., O'Donovan F. T., Sozzetti A., 2005, ApJ, 626, 523
    • Cooper C. S., Showman A. P., 2005, ApJ, 629, L45 Cowan N. B., Agol E., 2011, ApJ, 729, 54 Cowan N. B., Agol E., Charbonneau D., 2007, MNRAS, 379, 641
    • Cowan N. B., Machalek P., Croll B., Shekhtman L. M., Burrows A., Deming D., Greene T., Hora J. L., 2012, ApJ, 747, 82
    • Crossfield I. J. M., Hansen B. M. S., Harrington J., Cho J. Y.-K., Deming D., Menou K., Seager S., 2010, ApJ, 723, 1436
    • de Wit J., Gillon M., Demory B.-O., Seager S., 2012, arxiv:1202.3829
    • Deming D., Seager S., Richardson L. J., Harrington J., 2005, Nature, 434, 740
    • Doyle A. P., Smalley B., Maxted P. F. L., Anderson D. R., Collier-Cameron A., Gillon M., et al. 2012, MNRAS, submitted.
    • Enoch B., Collier Cameron A., Parley N. R., Hebb L., 2010, A&A, 516, A33+
    • Etzel P. B., 1981, in E. B. Carling & Z. Kopal ed., Photometric and Spectroscopic Binary Systems A Simple Synthesis Method for Solving the Elements of Well-Detached Eclipsing Systems. p. 111
    • Fabrycky D., Tremaine S., 2007, ApJ, 669, 1298 Fazio G. G., Hora J. L., Willner S. P., Stauffer J. R., Ashby M. L., Wang Z., Tollestrup E. V., Pipher J. L., Forrest W. J., McCreight C. R., Moseley S. H., Hoffmann W. F., Eisenhardt P., Wright E. L., 1998, in A. M. Fowler ed., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 3354 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Infrared array camera (IRAC) for the Space Infrared Telescope Facility (SIRTF). pp 1024-1031 Gillon M., Triaud A. H. M. J., Fortney J. J., Demory B.- O., Jehin E., Lendl M., Magain P., Kabath P., Queloz D., Alonso R., Anderson D. R., Collier Cameron A., Fumel A., Hebb L., Hellier C., Lanotte A., Maxted P. F. L., Mowlavi N., Smalley B., 2012, A&A, 542, A4 Gim´enez A., 2006, A&A, 450, 1231 Goodman J., 2009, ApJ, 693, 1645 Gray D. F., 2008, The Observation and Analysis of Stellar Photospheres. Cambridge University Press Harrington J., Hansen B. M., Luszcz S. H., Seager S., Deming D., Menou K., Cho J. Y.-K., Richardson L. J., 2006, Science, 314, 623
    • Hellier C., Anderson D. R., Cameron A. C., Gillon M., Hebb L., Maxted P. F. L., et al. 2009, Nature, 460, 1098 Huang X., Cumming A., 2012, ApJ, 757, 47 Jehin E., Gillon M., Queloz D., Magain P., Manfroid J., Chantry V., Lendl M., Hutsem´ekers D., Udry S., 2011, The Messenger, 145, 2
    • Knutson H. A., Charbonneau D., Allen L. E., Fortney J. J., Agol E., Cowan N. B., Showman A. P., Cooper C. S., Megeath S. T., 2007, Nature, 447, 183 Knutson H. A., Charbonneau D., Cowan N. B., Fortney J. J., Showman A. P., Agol E., Henry G. W., Everett M. E., Allen L. E., 2009, ApJ, 690, 822 Knutson H. A., Howard A. W., Isaacson H., 2010, ApJ, 720, 1569
    • Knutson H. A., Lewis N., Fortney J. J., Burrows A., Showman A. P., Cowan N. B., Agol E., Aigrain S., Charbonneau D., Deming D., D´esert J.-M., Henry G. W., Langton J., Laughlin G., 2012, ApJ, 754, 22 Laughlin G., Crismani M., Adams F. C., 2011, ApJ, 729, L7
    • Madhusudhan N., Harrington J., Stevenson K. B., Nymeyer S., Campo C. J., et al. 2011, Nature, 469, 64 Majeau C., Agol E., Cowan N. B., 2012, ApJ, 747, L20 Mardling R. A., 2007, MNRAS, 382, 1768 Maxted P. F. L., Anderson D. R., Collier Cameron A., Hellier C., Queloz D., Smalley B., Street R. A., Triaud A. H. M. J., West R. G., Gillon M., Lister T. A., Pepe F., Pollacco D., S´egransan D., Smith A. M. S., Udry S., 2011, PASP, 123, 547
    • Maxted P. F. L., Koen C., Smalley B., 2011, MNRAS, 418, 1039
    • Nelder J. A., Mead R., 1965, The Computer Journal, 7, 308
    • Nelson B., Davis W. D., 1972, ApJ, 174, 617 Nymeyer S., Harrington J., Hardy R. A., Stevenson K. B., Campo C. J., et al. 2011, ApJ, 742, 35 Perna R., Heng K., Pont F., 2012, ApJ, 751, 59 Perna R., Menou K., Rauscher E., 2010, ApJ, 724, 313 Pont F., Zucker S., Queloz D., 2006, MNRAS, 373, 231 Popper D. M., Etzel P. B., 1981, AJ, 86, 102 Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical recipes in FORTRAN. The art of scientific computing. Cambridge University Press Raghavan D., McAlister H. A., Henry T. J., Latham D. W., Marcy G. W., Mason B. D., Gies D. R., White R. J., ten Brummelaar T. A., 2010, ApJS, 190, 1 Rauscher E., Menou K., 2012, ApJ, 750, 96 Seager S., Mall´en-Ornelas G., 2003, ApJ, 585, 1038 Seager S., Sasselov D. D., 2000, ApJ, 537, 916 Southworth J., 2009, MNRAS, 394, 272 Southworth J., 2010, MNRAS, 408, 1689 Southworth J., 2011, MNRAS, 417, 2166 Southworth J., Hinse T. C., Dominik M., Glitrup M., Jørgensen U. G., et al. 2009, ApJ, 707, 167 Spiegel D. S., Burrows A., 2010, ApJ, 722, 871 Stetson P. B., 1987, PASP, 99, 191 Stevenson K. B., Harrington J., Fortney J. J., Loredo T. J., Hardy R. A., Nymeyer S., Bowman W. C., Cubillos P., Bowman M. O., Hardin M., 2012, ApJ, 754, 136 Torres G., Andersen J., Gim´enez A., 2010, A&A Rev., 18, 67
    • Triaud A. H. M. J., Collier Cameron A., Queloz D., Anderson D. R., Gillon M., Hebb L., Hellier C., Loeillet B., Maxted P. F. L., Mayor M., Pepe F., Pollacco D., S´egransan D., Smalley B., Udry S., West R. G., Wheatley P. J., 2010, A&A, 524, A25+
    • van Leeuwen F., 2007, A&A, 474, 653
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.