LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QE
Enhanced weathering is the process by which carbon dioxide is sequestered from the atmosphere through the dissolution of silicate minerals on the land surface. The carbon capture potential of enhanced weathering is large, yet there are few data on the effectiveness or engineering feasibility of such a scheme. Here, an energy/carbon balance is presented together with the associated operational costs for the United Kingdom as a case study. The silicate resources are large and could theoretically capture 430 billion tonnes (Gt) of CO2. The majority of this resource is contained in basic rocks (with a carbon capture potential of ∼0.3 tCO2 t−1 rock). There are a limited number of ultrabasic formations (0.8 tCO2 t−1 rock) with a total carbon capture potential of 25.4 GtCO2. It is shown that the energy costs of enhanced weathering may be 656–3501 kWh tCO2−1 (net CO2 draw-down, which accounts for emissions during production) for basic rocks and 224–748 kWh tCO2−1 for ultrabasic rocks. Comminution and material transport are the most energy intensive processes accounting for 77–94% of the energy requirements collectively. The operational costs of enhanced weathering could be £44–361 tCO2−1 ($70–578 tCO2−1) and £15–77 tCO2−1 ($24–123 tCO2−1) for basic and ultrabasic rocks respectively. Providing sufficient weathering rates full exploitation of this resource is not possible given the environmental and amenity value of some of the rock formations. Furthermore, the weathering rate and environmental impact of silicate mineral application to the land surface is not fully understood, and further investigation in this area is required to reduce the uncertainty in the estimated costs presented here.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • ASAE 1999. Agricultural Machinery Management Data. American Society of Agricultural Engineers.
    • Baláz, P., Turianicová, E., Fabián, M., Kleiv, R. A., Briancin, J. & Obut, A. 2008. Structural changes in olivine (Mg, Fe)2SiO4 mechanically activated in high-energy mills. International Journal of Mineral Processing, 88, 1-6.
    • Barrat, J. A. & Nesbitt, R. W. 1996. Geochemistry of the Tertiary volcanism of Northern Ireland. Chemical Geology, 129, 15-38.
    • Bell, B. R., Williamson, I. T., Head, F. E. & Jolley, D. W. 1996. On the origin of a reddened interflow bed within the Palaeocene lava field of north Skye. Scottish Journal of Geology, 32, 117-126.
    • Berner, R. A. & Kothavala, Z. 2001. Geocarb III: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301, 182-204.
    • BGS 2009. United Kingdom Minerals Yearbook 2008. Keyworth, Nottingham: British Geological Survey.
    • Bide, T., Smith, R. A., Hyslop, E. K., Smith, N. J. P., Coleman, T. & McMillan, A. A. 2008. Mineral Resource map for Clackmannanshire, DfT 2011c. Road Freight Statistics. Department for Fife and Falkirk. OR/08/12. British Geological Transport. Survey. http://www.dft.gov.uk/statistics/series/roadBrown, T., J., Coggan, J. S., Evans, D. J., Foster, freight/ P. J., Hewitt, J., Kruyswijk, J. B., Millar, D. L., DfT 2012. Domestic Waterborne Freight Statistics. Smith, N. & Steadman, E. J. 2010. Department for Transport. Underground mining of aggregates. Mineral http://www.dft.gov.uk/statistics/series/domesticIndustries Research Organisation. waterborne-freight/
    • Browne, M. A. E., Dean, M. T., Hall, I. H. S., Emeleus, C. H. 1982. The central complexes. In: McAdam, A. D., Monro, S. K. & Chrisholm, J. I. Sutherland, D. S. (ed.) Igneous Rocks of the 1999. A lithostratigraphical framework for the British Isles. John Wiley and Sons Ltd. ISBN 0 Carboniferous rocks of the Midland Valley of 471 27810 6 Scotland. British Geological Survey. England, R. W. 1994. The structure of the Skye BGS 1985. Platinum-group element mineralisation lava field. Scottish Journal of Geology, 30, 33- in the Unst ophiolite, Shetland. British 37. Geological Survey. Report # 73. Mineral Fitton, J. G. 1972. The genetic significance of Reconnaissance Programme. almandine-pyrope phenocrysts in the calcCEFIC 2011. Guidelines for measuring and alkaline Borrowdale Volcanic Group, Northern managing CO2 emission from freight transport England. Contributions to Mineralogy and operations. The European Chemical Industry Petrology, 36, 231-248. Council - ECTA. Fleming, I. R., Rowe, R. K. & Cullimore, D. R.
    • Chudleigh, P. D. & Greet, G. 1983. Energy use in 1999. Field observations of clogging in a New Zealand Agricultural Production. Lincoln landfill leachate collection system. Canadian College. Agricultural Economics Research Geotechnical Journal, 36, 685-707. Unit. Flinn, D. & Oglethorpe, R. J. D. 2005. A history of Church, W. R. & Gayer, R. A. 1973. The the Shetland Ophiolite Complex. Scottish Ballantrae ophiolite. Geological Magazine, 110, Journal of Geology, 41, 141-148. 497-510. Gandy, M. K. 1975. The Petrology of the Lower Coleman, R. G. 1977. Ophiolites: ancient oceanic Old Red Sandstone Lavas of the Eastern lithosphere?, Springer-Verlag. ISBN - Sidlaw Hills, Perthshire, Scotland. Journal of 354008276X Petrology, 16, 189-211.
    • Davies, B., Finney, B. & Eagle, D. 2001. Resource Gislason, S. R., Wolff-Boenisch, D., Stefansson, Management: Soil, Farming Press. ISBN - 0 A., Oelkers, E. H., Gunnlaugsson, E., 85236 559 4 Sigurdardottir, H., Sigfusson, B., Broecker, W.
    • Davis, S. C., Diegel, S. E. & Boundy, R. G. 2011. S., Matter, J. M., Stute, M., Axelsson, G. & Transportation energy data book: Edition 30. Fridriksson, T. 2010. Mineral sequestration of Centre for Transportation Analysis: Energy and carbon dioxide in basalt: A pre-injection Transportation Science Division. overview of the CarbFix project. International http://cta.ornl.gov/data/index.shtml Journal of Greenhouse Gas Control, 4, 537- DfT 2004. Planning for freight on inland 545. waterways. Department for Transport, Goldberg, D. S., Takahashi, T. & Slagle, A. L. Department for Environment Food and Rural 2008. Carbon dioxide sequestration in deepAffairs. sea basalt. Proceedings of the National http://assets.dft.gov.uk/publications/pgr-freight- Academy of Sciences of the United States of waterfreight-pfiw/fullguide.pdf America, 105, 9920-9925.
    • DfT 2011a. Energy consumption by transport Goldich, S. S. 1938. A Study in Rock-Weathering. mode and source of energy: United Kingdom, The Journal of Geology, 46, 17-58. 2000-2010. Department for Transport. Green, D. H. 1964. The Petrogenesis of the Highhttp://www.dft.gov.uk/statistics/series/road- temperature Peridotite Intrusion in the Lizard freight/ Area, Cornwall. Journal of Petrology, 5, 134- DfT 2011b. Greenhouse gas emissions by 188. transport mode: United Kingdom, 1999-2009. Hangx, S. J. T. & Spiers, C. J. 2009. Coastal Department for Transport. spreading of olivine to control atmospheric http://www.dft.gov.uk/statistics/series/road- CO2 concentrations: A critical analysis of freight/ viability. International Journal of Greenhouse during plume-related volcanism. Chemical Gas Control, 3, 757-767. Geology, 122, 43-58.
    • Harvey, L. D. D. 2008. Mitigating the atmospheric Kheshgi, H. S. 1995. Sequestering atmospheric CO2 increase and ocean acidification by adding carbon dioxide by increasing ocean alkalinity. limestone powder to upwelling regions. J. Energy, 20, 915-922. Geophys. Res., 113, C04028. Kirby, G. A. 1984. The petrology and geochemistry Haug, T. A., Kleiv, R. A. & Munz, I. A. 2010. of dykes of the Lizard Ophiolite Complex, Investigating dissolution of mechanically Cornwall. Journal of the Geological Society, activated olivine for carbonation purposes. 141, 53-59. Applied Geochemistry, 25, 1547-1563. Köhler, P., Hartmann, J. & Wolf-Gladrow, D. A.
    • House, K. Z., Baclig, A. C., Ranjan, M., van 2010. Geoengineering potential of artificially Nierop, E. A., Wilcox, J. & Herzog, H. J. 2011. enhanced silicate weathering of olivine. Economic and energetic analysis of capturing Proceedings of the National Academy of CO2 from ambient air. Proceedings of the Sciences, 107, 20228-20233. National Academy of Sciences. Köhler, P., Hartmann, J. & Wolf-Gladrow, D. A.
    • House of Commons: Science and Technology 2011. Reply to Schuiling et al.: Different Committee 2010. The Regulation of processes at work. Proceedings of the National Geoengineering. London: UK Parliment: House Academy of Sciences, 108, E42. of Commons Science and Technology Kokelaar, P. 1986. Petrology and Geochemistry of Committee. the Rhobell Volcanic Complex: Amphibolehttp://www.publications.parliament.uk/pa/cm20 Dominated Fractionation at an Early 0910/cmselect/cmsctech/221/221.pdf Ordovician Arc Volcano in North Wales.
    • Huijgen, W. J. J., Comans, R. N. J. & Witkamp, G.- Journal of Petrology, 27, 887-914. J. 2007. Cost evaluation of CO2 sequestration Lackner, K. S., Butt, D. P. & Wendt, C. H. 1997. by aqueous mineral carbonation. Energy Progress on binding CO2 in mineral substrates. Conversion and Management, 48, 1923-1935. Energy Conversion and Management, 38, Huijgen, W. J. J., Witcamp, G. & Comans, R. S259-S264. 2005. Mineral CO2 sequestration by steel slag Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. carbonation. Environmental Science and L. & Sharp, D. H. 1995. Carbon dioxide Technology, 39, 9676-9682. disposal in carbonate minerals. Energy, 20, Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., 1153-1170. Eisele, T. C. & Sutter, L. L. 2009. Carbon Lal, R. 2004. Carbon emission from farm dioxide sequestration in cement kiln dust operations. Environment International, 30, 981- through mineral carbonation. Environmental 990. Science & Technology, 43, 1986-1992. Lawson, N., Douglas, I., Garvin, S., McGrath, C., Keith, D. W. 2000. Geoengineering the climate: Manning, D. A. C. & Vetterlein, J. 2001. History and prospect. Annual Review of Energy Recycling construction and demolition wastes and the Environment, 25, 245-284. - a UK perspective Environmental Keith, D. W. 2009. Why Capture CO2 from the Management and Health, 12, 146-157. Atmosphere? Science, 325, 1654-1655. Liss, D., Owens, W. H. & Hutton, D. H. W. 2004.
    • Kelemen, P. B. & Matter, J. 2008. In situ New palaeomagnetic results from the Whin Sill carbonation of peridotite for CO2 storage. complex: evidence for a multiple intrusion Proceedings of the National Academy of event and revised virtual geomagnetic poles for Sciences, 105, 17295-17300. the late Carboniferous for the British Isles.
    • Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. Journal of the Geological Society, 161, 927- F., Curry, W. B. & Blusztajn, J. 2011. Rates 938. and Mechanisms of Mineral Carbonation in Macdonald, R., Thomas, J. E. & Rizzello, S. A. Peridotite: Natural Processes and Recipes for 1977. Variations in basalt chemistry with time Enhanced, in situ CO2 Capture and Storage. in the Midland Valley province during the Annual Review of Earth and Planetary Carboniferous and Permian. Scottish Journal Sciences, 39, 545-576. of Geology, 13, 11-22.
    • Kerr, A. C. 1995. The geochemistry of the Mull- Mankelow, J., Bide, T., Linley, K. & Hannis, S. Morvern Tertiary lava succession, NW 2008a. Aggregate Mineral Resources: North Scotland: an assessment of mantle sources East England Region. OR/08/025. British Geological Survey.
    • Mankelow, J., Bide, T., Linley, K. & Hannis, S. N. 2005. Aqueous mineral carbonation, Final 2008b. Aggregate Mineral Resources: South Report - DOE/ARC-TR-04-002. West England Region. OR/08/025. British Palandri, J. L. & Kharaka, Y. K. 2004. A Geological Survey. complitation of rate parameters of waterMankelow, J. M., Sen, M. A., Wrighton, C. E. & mineral interaction kinetics for application to Idoine, N. 2011. Collation of the results of the geochemical modelling. United States 2009 Aggregate Minerals Survey for England Geological Survey. and Wales. Department for Communities and Randall, B. A. O. 1989. Dolerite-pegmatites from Local Government, Welsh Assembly the Whin Sill near Barrasford, Northumberland. Government. Proceedings of the Yorkshire Geological and Mann, D. C. 1996. Geological and other influences Polytechnic Society, 47, 249-265. on the design of containment systems in hard Rau, G. H. 2011. CO2 Mitigation via Capture and rock quarries. Geological Society, London, Chemical Conversion in Seawater. Engineering Geology Special Publications, 11, Environmental Science & Technology, 45, 133-139. 1088-1092.
    • Manning, D. A. C. 2001. Calcite precipitation in Renforth, P., Manning, D. A. C. & Lopez-Capel, E. landfills: an essential product of waste 2009. Carbonate precipitation in artificial soils stabilization. Mineralogical Magazine, 65, 603- as a sink for atmospheric carbon dioxide. 610. Applied Geochemistry, 24, 1757-1764.
    • Metso 2010. Basics in Minerals Processing. Mineral Resource map for East Lothian, Edition 7 ed.: Metso Corporation. Midlothian, West Lothian and City of Millward, D., Marriner, G. F. & Beddoe-Stephens, Edinburgh. OR/08/13. British Geological B. 2000. The Eycott Volcanic Group, an Survey. Ordovician continental margin andesite suite in Smith, R. A., Bide, T., Hyslop, E. K., Smith, N. J. the English Lake District. Proceedings of the P., Coleman, T. & McMillan, A. A. 2008b. Yorkshire Geological and Polytechnic Society, Mineral Resource map for Inverclyde, West 53, 81-96. Dunbartonshire, East Dunbartonshire, Moseley, F. 1982. Introduction to Part 2: Lower Renfrewshire, East Renfrewshire, North Palaeozoic volcanic environments in the British Lanarkshire and City of Glasgow. OR/08/15. Isles. In: Sutherland, D. S. (ed.) Igneous Rocks British Geological Survey. of the British Isles. John Wiley and Sons Ltd. Smith, R. A., Bide, T., Hyslop, E. K., Smith, N. J. ISBN 0 471 27810 6 P., Coleman, T. & McMillan, A. A. 2008c.
    • O'Connor, W. K., Dahlin, D. C., Rush, G. E.,Mineral Resource map for North Ayrshire, East Gedermann, S. J., Penner, L. R. & Nilsen, D. Ayrshire and South Ayrshire. OR/08/014. White, A. F. & Brantley, S. L. 2003. The effect of British Geological Survey. time on the weathering of silicate minerals: why Stamboliadis, E., Pantelaki, O. & Petrakis, E. do weathering rates differ in the laboratory and 2009. Surface area production during grinding. field? Chemical Geology, 202, 479-506. Minerals Engineering, 22, 587-592. Woods, S., Mitchell, C. J., Harrison, D. J., Sutherland, D. S. (ed.) 1982. Igneous Rocks of the Ghazireh, N. & Manning, D. A. C. 2004. British Isles: John Wiley snf Sons Ltd. ISBN 0 Exploitation and use of quarry fines: a 471 27810 6 preliminary report. International Journal of The Energy and Climate Change Committee 2010. Pavement Engineering and Asphalt Energy and Climate Change - First Report. Technology, 5, 54-62.
    • The Royal Society 2009. Geoengineering the climate: Science governance and uncertainty.
    • Thirlwall, M. F. 1981. Implications for Caledonian plate tectonic models of chemical data from volcanic rocks of the British Old Red Sandstone. Journal of the Geological Society, 138, 123-138.
    • Thirlwall, M. F. 1983. Isotope geochemistry and origin of calc-alkaline lavas from a caledonian continental margin volcanic arc. Journal of Volcanology and Geothermal Research, 18, 589-631.
    • Thorpe, R. S. & MacDonald, R. 1985. Geochemical evidence for the emplacement of the Whin Sill complex of northern England. Geological Magazine, 122, 389-396.
    • UNCTAD 2010. Review of Maritime Transport. United Nations Conference on Trade and Development.
    • Viete, D. R., Richards, S. W., Lister, G. S., Oliver, G. J. H. & Banks, G. J. 2010. Lithosphericscale extension during Grampian orogenesis in Scotland. Geological Society, London, Special Publications, 335, 121-160.
    • Wang, Y. & Forssberg, E. 2003. International overview and outlook on comminution technology. Luleå: Luleå Tekniska Universitet: Department of Chemical Engineering and Geosciences.
    • Wang, Y., Forssberg, E. & Sachweh, J. 2004. Dry fine comminution in a stirred media millMaxxMill®. International Journal of Mineral Processing, 74, Supplement, S65-S74. http://pure.ltu.se/portal/en/publications/internati onal-overview-and-outlook-on-comminutiontechnology%28c8f73a70-a594-11db-9811- 000ea68e967b%29.html
    • Wasdsworth, W. J. 1982. The basic plutons. In: Sutherland, D. S. (ed.) Igneous Rocks of the British Isles. John Wiley snf Sons Ltd. ISBN 0 471 27810 6
    • White, A. F. & Brantley, S. L. 1995. Chemical weathering rates of silicate minerals, Mineralogical Society of America. ISBN 0- 939950-38-3.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article