Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
South, Colin R.
Languages: English
Types: Doctoral thesis
One of the major problems associated with communication via a loudspeaking telephone (LST) is that, using analogue processing, duplex transmission is limited to low-loss lines and produces a low acoustic output. An architectural for an instrument has been developed and tested, which uses digital signal processing to provide duplex transmission between a LST and a telopnone handset over most of the B.T. network. Digital adaptive-filters are used in the duplex LST to cancel coupling between the loudspeaker and microphone, and across the transmit to receive paths of the 2-to-4-wire converter. Normal movement of a person in the acoustic path causes a loss of stability by increasing the level of coupling from the loudspeaker to the microphone, since there is a lag associated the adaptive filters learning about a non-stationary path, Control of the loop stability and the level of sidetone heard by the hadset user is by a microprocessoe, which continually monitors the system and regulates the gain. The result is a system which offers the best compromise available based on a set of measured parameters.A theory has been developed which gives the loop stability requirements based on the error between the parameters of the filter and those of the unknown path. The programme to develope a low-cost adaptive filter in LST produced a low-cost adaptive filter in LST produced a unique architecture which has a number of features not available in any similar system. These include automatic compensation for the rate of adaptation over a 36 dB range of output level, , 4 rates of adaptation (with a maximum of 465 dB/s), plus the ability to cascade up to 4 filters without loss o performance. A complex story has been developed to determine the adptation which can be achieved using finite-precision arithmatic. This enabled the development of an architecture which distributed the normalisation required to achieve optimum rate of adaptation over the useful input range. Comparison of theory and measurement for the adaptive filter show very close agreement. A single experimental LST was built and tested on connections to hanset telephones over the BT network. The LST demonstrated that duplex transmission was feasible using signal processing and produced a more comfortable means of communication beween people than methods emplying deep voice-switching to regulate the local-loop gain. Although, with the current level of processing power, it is not a panacea and attention must be directed toward the physical acoustic isolation between loudspeaker and microphone.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article