LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects: Quantitative Biology - Neurons and Cognition

Classified by OpenAIRE into

arxiv: Quantitative Biology::Neurons and Cognition
The sigmoidal tuning curve that maximizes the mutual information for a Poisson neuron, or population of Poisson neurons, is obtained. The optimal tuning curve is found to have a discrete structure that results in a quantization of the input signal. The number of quantization levels undergoes a hierarchy of phase transitions as the length of the coding window is varied. We postulate, using the mammalian auditory system as an example, that the presence of a subpopulation structure within a neural population is consistent with an optimal neural code.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] W. Gerstner and W. Kistler, Spiking Neuron Models
    • 2002). [2] P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT
    • Press, Cambridge, MA, 2001). [3] P. Lansky, R. Rodriguez, and L. Sacerdote, Neural
    • Comput. 16, 477 (2004). [4] N. Brunel and J. Nadal, Neural Comput. 10, 1731
    • (1998). [5] M. Bethge, D. Rotermund, and K. Pawelzik, Phys. Rev.
    • Lett. 90, 088104 (2003). [6] M. Bethge, D. Rotermund, and K. Pawelzik, Network:
    • Computation in Neural Systems 14, 303 (2003). [7] R. E. Blahut, Principles and Practice of Information
    • Theory (Addison-Wesley, Reading, MA, 1987). [8] R. Q. Quiroga and S. Panzeri, Nat. Rev. Neurosci. 10, 173
    • (2009). [9] M. D. McDonnell and N. G. Stocks, Phys. Rev. Lett. 101,
    • 058103 (2008). [10] M. Bethge, D. Rotermund, and K. Pawelzik, Neural
    • Comput. 14, 2317 (2002). [11] K. Rose, IEEE Trans. Inf. Theory 40, 1939 (1994). [12] M. C. Teich and W. J. McGill, Phys. Rev. Lett. 36, 754
    • (1976). [13] Y. M. Kabanov, Theory Probab. Appl. 23, 143 (1978). [14] S. Shamai, IEE Proc. I, Commun. Speech Vis. 137, 424
    • (1990). [15] J. G. Smith, Inf. Control 18, 203 (1971). [16] J. Huang and S. P. Meyn, IEEE Trans. Inf. Theory 51,
    • 2336 (2005). [17] S. Ikeda and J. H. Manton, Neural Comput. 21, 1714
    • (2009). [18] E. Salinas, PLoS Biol. 4, e387 (2006). [19] M. D. McDonnell, Phys. Rev. E 79, 041107 (2009). [20] D. H. Johnson and I. N. Goodman, Network: Computation
    • in Neural Systems 19, 13 (2008). [21] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and
    • D. Abbott, Phys. Lett. A 352, 183 (2006). [22] H. Spoendlin and A. Schrott, Hearing Research 43, 25
    • (1989). [23] M. C. Liberman, Science 216, 1239 (1982). [24] B. S. Jackson and L. H. Carney, J. Assoc. Res.
    • Otolaryngology 6, 148 (2005). [25] C. J. Plack and B. C. J. Moore, J. Acoust. Soc. Am. 87,
    • 2178 (1990). [26] M. B. Sachs and P. J. Abbas, J. Acoust. Soc. Am. 56, 1835
    • (1974). [27] R. Meddis, J. Acoust. Soc. Am. 83, 1056 (1988).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article