Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Yi; Yang, Bin; Tian, Yingtao; Donnan, Robert S.; Lancaster, Michael J. (2014)
Publisher: IEEE Microwave Theory and Techniques Society
Languages: English
Types: Article
Subjects: TK, TA
This paper presents several freestanding bandpass mesh filters fabricated using an SU-8-based micromachining technique. The important geometric feature of the filters, which SU8 is able to increase, is the thickness of the cross-shaped micromachined slots. This is five times its width. This thickness offers an extra degree of control over the resonance characteristics. The large thickness not only strengthens the structures, but also enhances the resonance quality factor ( Q-factor). A 0.3-mm-thick, single-layer, mesh filter resonant at 300 GHz has been designed and fabricated and its performance verified. The measured Q-factor is 16.3 and the insertion loss is 0.98 dB. Two multi-layer filter structures have also been demonstrated. The first one is a stacked structure of two single mesh filters producing a double thickness, which achieved a further increased Q-factor of 27. This is over six times higher than a thin mesh filter. The second multilayer filter is an electromagnetically coupled structure forming a two-pole filter. The coupling characteristics are discussed based on experimental and simulation results. These thick mesh filters can potentially be used for sensing and material characterization at millimeter-wave and terahertz frequencies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] B. A. Munk, Frequency Selective Surfaces. New York, NY, USA: Wiley, 2000.
    • [2] H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, and F. Miyamaru, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett., vol. 91, Dec. 2007, Art. ID 253901.
    • [3] T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single- and double-stranded DNA,” J. Appl. Phys., vol. 112, Nov. 2012, Art. ID 094702.
    • [4] R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, D. Hindley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett., vol. 48, no. 11, pp. 611-612, May 2012.
    • [5] N. Hiromoto, Y. Okita, and I. Hosako, “Measurement of terahertz properties of pastes and gels used in medical examinations,” in Proc. Int. Conf. Infr. Milli. Waves Int. Conf. Tera. Electron., Sep. 2007, pp. 559-560.
    • [6] J. A. Hejase, O. R. Paladhi, and P. Chahal, “Terahertz characterization of dielectric substrates for component design and nondestructive evaluation of packages,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 11, pp. 1685-1694, Nov. 2011.
    • [7] B. B. Yang, S. L. Katz, K. L. Willis, M. J. Weber, I. Knezevic, S. C. Hagness, and J. H. Booske, “A high-Q terahertz resonator for the measurement of electronic properties of conductors and low-loss dielectrics,” IEEE Trans. THz Sci. Technol., vol. 2, no. 4, pp. 449-459, Jul. 2012.
    • [8] M. N. Afsar, A. Bellemans, J. R. Birch, G. W. Chantry, R. N. Clarke, R. J. Cook, R. Finsy, O. Gottman, J. Goulon, R. G. Jones, U. Kaatze, E. Kestemont, H. Kilp, M. Mandel, R. Pottel, J.-L. Rivail, C. B. Rosenberg, and R. Van Loon, “A comparison of dielectric measurement methods for liquids in the frequency range 1 GHz to 4 THz,” IEEE Trans. Instrum. Meas., vol. 29, no. 4, pp. 283-288, Dec. 1980.
    • [9] V. V. Parshin, M. Y. Tretyakov, M. A. Koshelev, and E. A. Serov, “Modern resonator spectroscopy at submillimeter wavelengths,” IEEE Sensors J., vol. 13, no. 1, pp. 18-23, Jan. 2013.
    • [10] A. G. Markelza, A. Roitbergb, and E. J. Heilweila, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett., vol. 320, no. 1-2, pp. 42-48, Mar. 2000.
    • [11] M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett., vol. 80, no. 1, pp. 154-156, Jan. 2002.
    • [12] M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett., vol. 77, no. 24, pp. 4049-4051, Dec. 2000.
    • [13] J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations,” Opt. Exp., vol. 16, no. 3, pp. 1786-1795, Jan. 2008.
    • [14] S. Vegesna, Y. Zhu, A. Bernussi, and M. Saed, “Terahertz two-layer frequency selective surfaces with improved transmission characteristics,” IEEE Trans. THz Sci. Technol., vol. 2, no. 4, pp. 441-448, Jul. 2012.
    • [15] A. Melo, A. Gobbi, M. Piazzetta, and A. da Silva, “Cross-shaped terahertz metal mesh filters: Historical review and results,” Adv. Opt. Tech., vol. 2012, 2012, Art. ID 530512.
    • [16] R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. THz Sci. Technol., vol. 1, no. 2, pp. 450-461, Nov. 2011.
    • [17] V. Nazmov, E. Reznikova, Y. Mathis, J. Mathuni, A. Müller, P. Rudych, A. Last, and V. Saile, “Bandpass filters made by LIGA for the THZ region: Manufacturing and testing,” Nucl. Instrum. Meth. Phys. Res. Sect. A, vol. 603, no. 1-2, pp. 150-152, May 2009.
    • [18] X. Shang, M. L. Ke, Y. Wang, and M. J. Lancaster, “WR-3 band waveguides and filters fabricated using SU8 photoresist micromachining technology,” IEEE Trans. THz Sci. Technol., vol. 2, no. 6, pp. 629-637, Nov. 2012.
    • [19] CST Microwave Studio. Darmstadt, Germany, CST GmbH, 2006.
    • [20] K. D. Möller, J. Warren, J. B. Heaney, and C. Kotecki, “Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions,” Appl. Opt., vol. 35, no. 31, pp. 6210-6215, Nov. 1996.
    • [21] C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett., vol. 91, Oct. 2007, Art. ID 184102.
    • [22] K. D. Möller, K. R. Farmer, D. V. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, “Thin and thick cross shaped metal grids,” Infr. Phys. Tech., vol. 40, no. 6, pp. 475-485, Dec. 1999.
    • [23] J. D. Williams and W. Wang, “Study on the postbaking process and the effects on UV lithography of high aspect ratio SU-8 microstructures,” J. Microlith., Microfab., Microsys., vol. 3, pp. 563-568, Oct. 2004.
    • [24] B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, “Negative permeability characterization of gyrotropic Hexaferrite in the millimeter wave band for engineering of double-negative devices,” J. Appl. Phys., vol. 109, May 2011, Art. ID 104505.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article