LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1063/1.4894227
We investigate the HM+–He complexes (M = Group 2 metal) using quantum chemistry. Equilibrium geometries are linear for M = Be and Mg, and bent for M = Ca–Ra; the explanation for this lies in the differing nature of the highest occupied molecular orbitals in the two sets of complexes. The difference primarily occurs as a result of the formation of the H–M+ bond, and so the HM+ diatomics are also studied as part of the present work. The position of the He atom in the complexes is largely determined by the form of the electron density. HM+. . . He binding energies are obtained and are surprisingly high for a helium complex. The HBe+. . . He value is almost 3000 cm−1, which is high enough to suspect contributions from chemical bonding. This is explored by examining the natural orbital density and by population analyses.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1W. Koch, G. Frenking, J. Gauss, D. Cremer, and J. R. Collins, J. Am. Chem. Soc. 109, 5917 (1987).
    • 2C. J. Evans, T. G. Wright, and A. M. Gardner, J. Phys. Chem. A 114, 4446 (2010).
    • 3W. Zou, D. Nori-Shargh, and J. E. Boggs, J. Phys. Chem. A 117, 207 (2013).
    • 4W. L. Zou, Y. Liu, and J. E. Boggs, Chem. Phys. Lett. 482, 207 (2009).
    • 5R. Chen, H. Zhu, D. Q. Xie, and G. S. Yan, Sci. China, Ser. B 52, 1987 (2009).
    • 6X. Wang, L. Andrews, F. Brosi, and S. Riedel, Chem. - Eur. J. 19, 1397 (2013).
    • 7X. Wang, L. Andrews, K. Willmann, F. Brosi, and S. Riedel, Angew. Chem., Int. Ed. 51, 10628 (2012).
    • 8P. Antoniotti, P. Facchini, and F. Grandinetti, Int. J. Mass Spectrom. 228, 415 (2003).
    • 9A. M. Gardner, C. D. Withers, J. B. Graneek, T. G. Wright, L. A. Viehland, and W. H. Breckenridge, J. Phys. Chem. A 114, 7631 (2010).
    • 10M. F. McGuirk, L. A. Viehland, E. P. F. Lee, W. H. Breckenridge, C. D. Withers, A. M. Gardner, R. J. Plowright, and T. G. Wright, J. Chem. Phys. 130, 194305 (2009).
    • 11A. M. Gardner, C. D. Withers, T. G. Wright, K. I. Kaplan, C. Y. N. Chapman, L. A. Viehland, E. P. F. Lee, and W. H. Breckenridge, J. Chem. Phys. 132, 054302 (2010).
    • 12S. Niyonzima, F. Lique, K. Chakrabarti, Å. Larson, A. E. Orel, and I. F. Schneider, European Conference on Laboratory Astrophysics - ECLA, EAS Publication Series Vol. 58, edited by C. Stehlé, C. Joblin, and L. d'Hendecourt (Cambridge University Press, 2012), p. 291.
    • 13G. C. Groenenboom and N. Balakrishnan, J. Chem. Phys. 118, 7380 (2003).
    • 14See, for example, R. Wesendrup, G. Esperenza Moyano, M. Pernpointner, and P. Schwerdtfeger, J. Chem. Phys. 117, 7506 (2002).
    • 15S. Ikuta, K. Yoshihara, and T. Shiokawa, J. Nucl. Sci. Technol. 14, 720 (1977).
    • 16E. Bengtsson-Knave, Nova Acta Regiae Soc. Sci. Ups. 8, 1 (1932).
    • 17W. W. Watson and R. F. Humphreys, Phys. Rev. 52, 318 (1937).
    • 18J. A. Coxon and R. Colin, J. Mol. Spectrosc. 181, 215 (1997).
    • 19R. W. B. Pearse, Proc. R. Soc. A 125, 157 (1929).
    • 20A. Guntsch, Z. Phys. 107, 420 (1937).
    • 21M. E. Pillow, Proc. Phys. Soc. London Sect. A 62, 237 (1949).
    • 22W. J. Balfour, Can. J. Phys. 50, 1082 (1972).
    • 23R. Georgiadis and P. B. Armentrout, J. Phys. Chem. 92, 7060 (1988).
    • 24N. F. Dalleska, K. C. Crellin, and P. B. Armentrout, J. Phys. Chem. 97, 3123 (1993).
    • 25P. B. Armentrout and J. L. Beauchamp, Chem. Phys. 48, 315 (1980).
    • 26J. Koput, J. Chem. Phys. 139, 104309 (2013).
    • 27M. Aymar, R. Guérout, M. Sahlaoui, and O. Dulieu, J. Phys. B: At., Mol. Opt. Phys. 42, 154025 (2009).
    • 28M. Abe, M. Kajita, M. Hada, and Y. Morikawa, J. Phys. B: At., Mol. Opt. Phys. 43, 245102 (2010).
    • 29M. Aymar and O. Dulieu, J. Phys. B: At., Mol. Opt. Phys. 45, 215103 (2012).
    • 30A. J. Page, D. J. D. Wilson, and E. I. Nagy-Felsobuki, Chem. Phys. Lett. 442, 194 (2007).
    • 31A. J. Page and E. I. Nagy-Felsobuki, Phys. Chem. Chem. Phys. 10, 1285 (2008).
    • 32H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
    • 33M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
    • 34T. J. Lee and P. R. Taylor, Int. J. Quantum Chem. 36, 199 (1989).
    • 35T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
    • 36D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
    • 37B. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., and A. K. Wilson, Theor. Chem. Acc. 128, 69 (2011).
    • 38I. S. Lim, H. Stoll, and P. Schwerdtfeger, J. Chem. Phys. 124, 034107 (2006).
    • 39M. Kaupp, P. V. R. Schleyer, H. Stoll, and H. Preuss, J. Chem. Phys. 94, 1360 (1991).
    • 40G. Schaftenaar and J. H. Noordik, “Molden: A pre- and post-processing program for molecular and electronic structures,” J. Comput.-Aided Mol. Des. 14, 123 (2000).
    • 41R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
    • 42A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).
    • 43E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold, NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
    • 44R. F. W. Bader, Atoms in Molecules-A Quantum Theory (Oxford University Press, Oxford, U.K., 1990).
    • 45T. A. Keith, T. K. Gristmill Software, AIMAll, Overland Park, KS, 2011, see aim.tkgristmill.com.
    • 46A. Andrejeva, A. M. Gardner, J. B. Graneek, R. J. Plowright, W. H. Breckenridge, and T. G. Wright, J. Phys. Chem. A 117, 13578 (2013).
    • 47J. P. Harris, D. R. Manship, W. H. Breckenridge, and T. G. Wright, J. Chem. Phys. 140, 084304 (2014).
    • 48D. Cremer and E. Kraka, Angew. Chem., Int. Ed. Engl. 23, 627 (1984).
    • 49T. G. Wright and W. H. Breckenridge, J. Phys. Chem. A 114, 3182 (2010).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article