- 1 F. E. Low, Phys. Rev. 96, 1428 ~1954!; M. Gell-Mann and M. L. Goldberger, ibid. 96, 1433 ~1954!.
- 2 P. M. Platzman and N. Tzoar, Phys. Rev. B 2, 3556 ~1970!.
- 3 M. Blume, J. Appl. Phys. 57, 3615 ~1985!.
- 4 K. Namikawa, M. Ando, T. Nakajima, and H. Kawata, J. Phys. Soc. Jpn. 54, 4099 ~1985!.
- 5 F. de Bergevin and M. Brunel, Acta Crystallogr. Sect. A 37, 314 ~1981!.
- 6 D. Gibbs, D. R. Harshman, E. D. Isaacs, D. B. McWhan, D. Mills, and C. Vettier, Phys. Rev. Lett. 61, 1241 ~1988!.
- 7 C. Kao, J. B. Hastings, E. D. Johnson, D. P. Siddons, G. C. Smith, and G. A. Prinz, Phys. Rev. Lett. 65, 373 ~1990!.
- 8 C.-C. Kao, C. T. Chen, E. D. Johnson, J. B. Hastings, H. J. Lin, G. H. Ho, G. Meigs, J.-M. Brot, S. L. Hulbert, Y. U. Idzerda, and C. Vettier, Phys. Rev. B 50, 9599 ~1994!.
- 9 M. Blume and D. Gibbs, Phys. Rev. B 37, 1779 ~1988!.
- 10 J. P. Hannon, G. T. Trammel, M. Blume, and D. Gibbs, Phys. Rev. Lett. 61, 1245 ~1988!.
- 11 A. Fasolino, P. Carra, and M. Altarelli, Phys. Rev. B 47, 3877 ~1993!.
- 12 P. Rennert, Phys. Rev. B 48, 13 559 ~1993!.
- 13 J. C. Lang, G. Srajer, C. Detlefs, A. I. Goldman, H. Ko¨nig, X. Wang, B. N. Harmon, and R. W. McCallum, Phys. Rev. Lett. 74, 4935 ~1995!.
- 14 C. Giorgetti, E. Dartyge, C. Brouder, F. Baudelet, C. Meyer, S. Pizzini, A. Fontaine, and R-M. Gale´ra, Phys. Rev. Lett. 75, 3186 ~1995!.
- 15 J. P. Hill, A. Vigliante, D. Gibbs, J. L. Peng, and R. L. Greene, Phys. Rev. B 52, 6575 ~1995!.
- 16 P. Carra, M. Altarelli, and F. de Bergevin, Phys. Rev. B 40, 7324 ~1989!.
- 17 P. Strange, H. Ebert, J. B. Staunton, and B. L. Gyorffy, J. Phys. Condens. Matter 1, 2959 ~1989!.
- 18 P. Strange, J. Staunton, and B. L. Gyorffy, J. Phys. C 17, 3355 ~1984!.
- 19 E. Arola, in Acta Polytechnica Scandinavica, Applied Physics Series No. 174, edited by M. Luukkala ~The Finnish Academy of Technology, Helsinki, 1991!.
- 20 J. J. Sakurai, Advanced Quantum Mechanics ~Addison-Wesley, Reading, MA, 1967!.
- 21 P. J. Durham, in Electronic Structure of Complex Systems, edited by P. Phariseau and W. M. Temmerman, Vol. 113 of NATO Advanced Study Institute, Series B: Physics ~Plenum Press, New York, 1984!.
- 22 L. V. Keldysh, Sov. Phys. JETP 20, 1018 ~1965!.
- 23 It is noticeable that vL(Wr) represents a real positron e1, which can closely be related to one of the negative-energy electron states by symmetry of the Dirac equation.
- 24 In the nonrelativistic case both the first- and second-order terms of Eq. ~1! contribute to the scattering amplitude ~Ref. 3!.
- 25 Our definition of the scattering amplitude is identical to the commonly used concept of ''matrix element'' @see, for example, Rennert ~Ref. 12!#, and therefore is slightly different ~see discussion at the end of Sec. II E! from the standard one @ds /dV [u f (v )u2, where ds /dV is the differential scattering cross section and f (v ) is the scattering amplitude#. By doing this, we avoid confusion with another ''matrix element'' concept in our theory ~see Sec. II D!. Our scattering amplitude results, however, are presented in terms of the standard scattering amplitude ~see Figs. 3 and 4!.
- 26 We basically need the Green's function G1(Wr,Wr8,e ) only for Wr and Wr8 both lying within the same site, because the core states uL(Wr) in Eq. ~11! are usually highly localized inside a given muffin-tin sphere.
- 27 J. S. Faulkner and G. M. Stocks, Phys. Rev. B 21, 3222 ~1980!.
- 28 A. H. MacDonald and S. H. Vosko, J. Phys. C 12, 2977 ~1979!.
- 29 Therefore, the solution ZL(Wrn ,e ) @and similarly JL(Wrn ,e )# does not have a well-defined spin angular character, and only m remains as a good quantum number ~Ref. 30!.
- 30 H. Ebert, B. Drittler, P. Strange, R. Zeller, and B. L. Gyorffy, in The Effects of Relativity on Atoms, Molecules, and the Solid State, edited by S. Wilson et al. ~Plenum Press, New York, 1991!.
- 31 V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals ~Pergamon, Oxford, 1978!.
- 32 D. D. Johnson, F. J. Pinski, and G. M. Stocks, J. Appl. Phys. 57, 3018 ~1985!.
- 33 M. E. Rose, Relativistic Electron Theory ~Wiley, New York, 1961!.
- 34 G. Schu¨ tz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. 58, 737 ~1987!.
- 35 O. Keski-Rahkonen and M. O. Krause, At. Data Nucl. Data Tables 14, 139 ~1974!.
- 36 If an atomic LII,III-subshell core-hole lifetime value of G50.24 eV is used, then the dichroism curve ~with or without an extra Gaussian instrumental broadening convolution on the cross section! contains quite profound oscillations, which are not present in the measured dichroism curves provided by Kao et al. ~Ref. 7!. Furthermore, using G51 eV reproduces well all the features observed in the measured dichroism curve by Kao et al. ~Ref. 7!. We have also noticed that using G values larger than about 1 eV will not change the qualitative nature of the dichroism curve. We want to stress that G is just a parameter reflecting the manybody effects involved in the x-ray-scattering process, and is not linked in any systematic manner to the ab initio part of the theory, i.e., to the LDA electronic structure.