OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Higgs, Nicholas D.; Newton, Jason; Attrill, Martin J. (2016)
Publisher: Elsevier (Cell Press)
Journal: Current Biology
Languages: English
Types: Article
Subjects: Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all)
The Caribbean spiny lobster, Panulirus argus, is one of the most valuable fisheries commodities in the Central American region, directly employing 50,000 people and generating >US$450 million per year [ 1]. This industry is particularly important to small island states such as The Bahamas, which exports more lobster than any other country in the region [1]. Several factors contribute to this disproportionally high productivity, principally the extensive shallow-water banks covered in seagrass meadows [2], where fishermen deploy artificial shelters for the lobsters to supplement scarce reef habitat [3]. The surrounding seabed communities are dominated by lucinid bivalve mollusks that live among the seagrass root system [ 4 and 5]. These clams host chemoautotrophic bacterial symbionts in their gills that synthesize organic matter using reduced sulfur compounds, providing nutrition to their hosts [6]. Recent studies have highlighted the important role of the lucinid clam symbiosis in maintaining the health and productivity of seagrass ecosystems [ 7 and 8], but their biomass also represents a potentially abundant, but as yet unquantified, food source to benthic predators [9]. Here we undertake the first analysis of Caribbean spiny lobster diet using a stable isotope approach (carbon, nitrogen, and sulfur) and show that a significant portion of their food (∼20% on average) is obtained from chemosynthetic primary production in the form of lucinid clams. This nutritional pathway was previously unrecognized in the spiny lobster’s diet, and these results are the first empirical evidence that chemosynthetic primary production contributes to the productivity of commercial fisheries stocks.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Winterbottom, M., Haughton, M., Mutrie, E., and Grieve, K. (2012). Management of the spiny lobster fishery in CARICOM countries: status and recommendations for conservation. Proc. Gulf Caribb. Fish. Inst. 64, 456-462.
    • 2. Buchan, K. (2000). The Bahamas. Mar. Pollut. Bull. 41, 94-111.
    • 3. Eggleston, D.B., Lipcius, R.N., and Grover, J.J. (1997). Predator and shelter-size effects on coral reef fish and spiny lobster prey. Mar. Ecol. Prog. Ser. 149, 43-59.
    • 4. Craig, G.Y. (1967). Size-frequency distributions of living and dead populations of pelecypods from Bimini, Bahamas, BWI. J. Geol. 75, 34-45.
    • 5. Jackson, J.B.C. (1973). The ecology of molluscs of Thalassia communities, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bull. Mar. Sci. 23, 313-350.
    • 6. Caro, A., Got, P., Bouvy, M., Troussellier, M., and Gros, O. (2009). Effects of long-term starvation on a host bivalve (Codakia orbicularis, Lucinidae) and its symbiont population. Appl. Environ. Microbiol. 75, 3304-3313.
    • 7. Reynolds, L.K., Berg, P., and Zieman, J.C. (2007). Lucinid clam influence on the biogeochemistry of the seagrass Thalassia testudinum sediments. Estuaries Coasts 30, 482-490.
    • 8. van der Heide, T., Govers, L.L., de Fouw, J., Olff, H., van der Geest, M., van Katwijk, M.M., Piersma, T., van de Koppel, J., Silliman, B.R., Smolders, A.J.P., and van Gils, J.A. (2012). A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336, 1432-1434.
    • 9. Meyer, E., Nilkerd, B., Glover, E.A., and Taylor, J.D. (2008). Ecological importance of chemoautotrophic lucinid bivalves in a peri-mangrove community in Eastern Thailand. Raffles Bull. Zool. 18, 41-55.
    • 10. Herrera, A., Ibarzabal, D., Foyo, J., Espinosa, J., Brito, R., Gonzalez, G., Diaz, E., Gotera, G., and Arrinda, C. (1991). Alimentacion natural de la langosta Panulirus argus en la region de los indios (plataforma SW de Cuba) y su relacion con el bentos. Rev. Invest. Mar. 12, 172-182.
    • 11. Cox, C., Hunt, J.H., Lyons, W.G., and Davis, G.E. (1997). Nocturnal foraging of the Caribbean spiny lobster (Panulirus argus) on offshore reefs of Florida, USA. Mar. Freshwater Res. 48, 671-679.
    • 12. Nizinski, M.S. (2007). Predation in subtropical soft-bottom systems: spiny lobster and molluscs in Florida Bay. Mar. Ecol. Prog. Ser. 345, 185-197.
    • 13. Hyslop, E.J. (1980). Stomach contents analysis-a review of methods and their application. J. Fish Biol. 17, 411-429.
    • 14. Dubilier, N., Bergin, C., and Lott, C. (2008). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725-740.
    • 15. Judd, A.G., and Hovland, M. (1989). The role of chemosynthesis in supporting fish stocks in the North Sea. J. Fish Biol. 35, 329-330.
    • 16. MacAvoy, S.E., Carney, R.S., Fisher, C.R., and Macko, S.A. (2002). Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 225, 65-78.
    • 17. McLeod, R.J., Wing, S.R., and Skilton, J.E. (2010). High incidence of invertebrate-chemoautotroph symbioses in benthic communities of the New Zealand fjords. Limnol. Oceanogr. 55, 2097-2106.
    • 18. van Gils, J.A., van der Geest, M., Leyrer, J., Oudman, T., Lok, T., Onrust, J., de Fouw, J., van der Heide, T., van den Hout, P.J., Spaans, B., et al. (2013). Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird. Proc. Biol. Sci. 280, 20130861.
    • 19. Grey, J. (2016). The Incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Front. Ecol. Evol. 4, 8.
    • 20. Berg, C.J., and Alatalo, P. (1984). Potential of chemosynthesis in molluscan mariculture. Aquaculture 39, 165-179.
    • 21. Vetter, R.D., and Fry, B. (1998). Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms. Mar. Biol. 132, 453-460.
    • 22. Duplessis, M.R., Dufour, S.C., Blankenship, L.E., and Felbeck, H. (2004). Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin. Mar. Biol. 145, 551-561.
    • 23. Randall, J.E. (1964). Contributions to the biology of the queen conch, Strombus gigas. Bull. Mar. Sci. 14, 246-295.
    • 24. Behringer, D.C., and Butler, M.J., 4th. (2006). Stable isotope analysis of production and trophic relationships in a tropical marine hard-bottom community. Oecologia 148, 334-341.
    • 25. Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., et al. (2004). Ecology. Ecosystem-based fishery management. Science 305, 346-347.
    • 26. Hind, E.J. (2015). A review of the past, the present, and the future of fishers' knowledge research: a challenge to established fisheries science. ICES J. Mar. Sci. 72, 341-358.
    • 27. WWF (2016). Bahamas lobster fishery improvement project. http://
    • 28. Cruz, R., and Erito, R. (1986). Ecologı´a de la langosta (Panulirus argus) al SE de la Isla de la Juventud. I. Colonizacio´ nde arrecifes artificiales. Rev. Invest. Mar. 7, 3-17.
    • 29. Joll, L.M., and Phillips, B.F. (1984). Natural diet and growth of juvenile western rock lobsters Panulirus cygnus George. J. Exp. Mar. Biol. Ecol. 75, 145-169.
    • 30. Rainer, S.F., and Wadley, V.A. (1991). Abundance, growth and production of the bivalve Solemya sp., a food source for juvenile rock lobsters in a seagrass community in Western Australia. J. Exp. Mar. Biol. Ecol. 152, 201-223.
    • 31. Jack, L., Wing, S.R., and McLeod, R.J. (2009). Prey base shifts in red rock lobster Jasus edwardsii in response to habitat conversion in Fiordland marine reserves: implications for effective spatial management. Mar. Ecol. Prog. Ser. 381, 213-222.
    • 32. Phillips, D.L., Inger, R., and Bearhop, S. (2014). Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823-835.
    • 33. Phillips, D.L., Newsome, S.D., and Gregg, J.W. (2005). Combining sources in stable isotope mixing models: alternative methods. Oecologia 144, 520-527.
    • 34. Parnell, A.C., Phillips, D.L., Bearhop, S., Semmens, B.X., Ward, E.J., Moore, J.W., Jackson, A.L., Grey, J., Kelly, D.J., and Inger, R. (2013). Bayesian stable isotope mixing models. Environmetrics 24, 387-399.
    • 35. Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, C.M., Harrison, E., Jud, Z.R., Matich, P., Rosenblatt, A.E., Vaudo, J.J., Yeager, L.A., et al. (2012). Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545-562.
    • 36. Waddington, K., and MacArthur, L. (2008). Diet quality and muscle tissue location influence consumer-diet discrimination in captive-reared rock lobsters (Panulirus cygnus). Mar. Biol. 154, 569-576.
    • 37. Nehlich, O. (2015). The application of sulphur isotope analyses in archaeological research: a review. Earth Sci. Rev. 142, 1-17.
    • 38. Phillips, D.L., and Koch, P.L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114-125.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok