Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer Verlag
Languages: English
Types: Article
We aim to answer the question about the cross-section of a planar coronal loop with a prescribed shape. We restrict the analysis to coronal loops embedded in a planar potential magnetic field. Then we carry out the analysis in the leading-order approximation with respect to the small parameter ϵ equal to the ratio of the characteristic size of the loop cross-section to the loop length. We show that, in this approximation, the loop cross-section can be prescribed arbitrarily at one of its footpoints. Then the loop cross-section at any other point is obtained by stretching or compressing the prescribed loop cross-section in the direction that is perpendicular to the loop axis and in the plane of the loop. The variation of the coefficient of stretching or compression along the loop can be chosen arbitrarily. In particular, it follows from this result that we can consider a planar loop of arbitrary shape and assume that its cross-section is circular everywhere and has a constant radius.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andries, J., Arregui, I., Goossens, M.: 2005, Astrophys. J. Lett. 624, L57. DOI. Andries, J., Van Doorsselaere, T., Roberts, B., Verth, G., Erdélyi, R.: 2009, Space Sci. Rev. 149, 3. DOI. Aschwanden, M.J.: 2006, Phil. Trans. Roy. Soc. A 364, 417. DOI. Aschwanden, M.J., Schrijver, C.J.: 2011, Astrophys. J. 736, 102. DOI. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Astrophys. J. 520, 880. DOI. Aschwanden, M.J., De Pontieu, B., Schrijver, C.J., Title, A.M.: 2002, Solar Phys. 206, 99. DOI. Dymova, M., Ruderman, M.S.: 2005, Solar Phys. 229, 79. ADS. DOI. Dymova, M., Ruderman, M.S.: 2006, Astron. Astrophys. 459, 241. DOI. Edwin, P.M., Roberts, B.: 1983, Solar Phys. 88, 179. DOI.
    • Morton, R.J., Erdélyi, R.: 2009, Astron. Astrophys. 502, 315. DOI. Morton, R.J., Ruderman, M.S.: 2011, Astron. Astrophys. 527, A53. DOI. Nakariakov, V., Ofman, L., DeLuca, E.E., Roberts, B., Davila, J.M.: 1999, Science 285, 862. DOI. Orza, B., Ballai, I.: 2013, Astron. Nachr. 334, 948. DOI.
    • Ruderman, M.S.: 2003, Astron. Astrophys. 409, 287. DOI.
    • Ruderman, M.S.: 2009, Astron. Astrophys. 506, 885. DOI.
    • Ruderman, M.S., Erdélyi, R.: 2009, Space Sci. Rev. 149, 199. DOI. Ruderman, M.S., Verth, G., Erdélyi, R.: 2008, Astrophys. J. 686, 694. DOI. Ryutov, D.D., Ryutova, M.P.: 1976, Sov. Phys. JETP 43, 491. ADS. Schrijver, C.J., Brown, D.S.: 2000, Astrophys. J. Lett. 537, L69. DOI. Schrijver, C.J., Aschwanden, M.J., Title, A.M.: 2002, Solar Phys. 206, 69. DOI. Terradas, J., Oliver, R., Ballester, J.L.: 2006, Astrophys. J. Lett. 650, L91. DOI. Van Doorsselaere, T., Debosscher, A., Andries, J., Poedts, S.: 2004, Astron. Astrophys. 424, 1065. DOI. Van Doorsselaere, T., Verwichte, E., Terradas, J.: 2009, Space Sci. Rev. 149, 299. DOI. Verth, G., Erdélyi, R.: 2008, Astron. Astrophys. 486, 1015. DOI.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article