Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Luo, Quanshun; Yang, S.; Cooke, K.E. (2013)
Publisher: Elsevier
Languages: English
Types: Article
High power impulse magnetron sputtering (HIPIMS) has the advantage of ultra-dense plasma deposition environment although the resultant deposition rate is significantly low. By using a closed field unbalanced magnetron sputtering system, a hybrid process consisting of one HIPIMS powered magnetron and three DC magnetrons has been introduced in the reactive sputtering deposition of a TiN hard coating on a hardened steel substrate, to investigate the effect of HIPIMS incorporation on the deposition\ud rate and on the microstructure and mechanical and tribological properties of the deposited coating. Various characterizations and tests have been applied in the study, including XRD, FEG-SEM, cross-sectional TEM, Knoop hardness, adhesion tests and unlubricated ball-on-disk tribo-tests. The results revealed that, both the DC magnetron and hybrid-sputtered TiN coatings exhibited\ud dense columnar morphology, a single NaCl-type cubic crystalline phase with strong (220) texture, and good adhesion property.\ud The two coatings showed similar dry sliding friction coefficient of 0.8 – 0.9 and comparable wear coefficient in the range of 1 – 2× 10-15 m3N-1m-1. The overall deposition rate of the hybrid sputtering, being 0.047 μm/min as measured in this study, was governed predominantly by the three DC magnetrons whereas the HIPIMS only made a marginal contribution. However, the incorporated HIPIMS has been found to lead to remarkable reduction of the compressive residual stress from -6.0 to -3.5 GPa and a slight increase in the coating hardness from 34.8 to 38.0 GPa.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] V. Kouznetsov, K. Macak, J. Schneider, U. Helmersson, I. Petrov, Surf. Coat. Technol. 122 (1999) 290.
    • [2] B. Vyse, J. M. Gissing, Spectra of short, locked magnetron pulses, IEEE Transactions on Electron Devices Ed18, 1971, 221.
    • [3] I. M. Vigdorchik, V. D. Naumenko, V. P. Timofeev, Dopovidi Akademii Nauk Ukrainskoi RSR Seriya A-Fiziko-Matecatichni Ta Technichni Nauki 7 (1975) 633.
    • [4] R. K. Parker, W.M. Black, R. Tobin, M. Herndon, V.L. Granatstein, G. Farney, Bulletin of the American Physical Society 23 (1978) 863.
    • [5] P. M. Tyuryukanov, I. K. Fetisov, A. D. Nikolskii, Zhurnal Tekhnicheskoi Fiziki 51 (1981) 2018.
    • [6] R. Gruen, Process and apparatus for coating conducting pieces using a pulsed glow discharge, US Patent 5015493, May 14, 1991.
    • [7] D. V. Mozgrin, I. K. Fetisov, G.V. Khodachenko, Plasma Phys. Rep. 21 (1995) 401.
    • [8] S. P. Bugaev, N. N. Koval, N. S. Sochugov, A. N. Zakharov, Investigation of a high-current pulsed magnetron discharge initiated in the low-pressre diffuse arc plasma, XVIIth International on Discharges and Electrical Insulation in Vacuum, 1996, p. 1074.
    • [9] I. K. Fetisov, A. A. Filippov, G. V. Khodachenko, D. V. Mozgrin, A. A. Pisarev, Vacuum 53 (1999) 133.
    • [10] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gudmundsson, Thin Solid Films 513 (2006) 1.
    • [11] K. Sarakinos, J. Alami, S. Konstantinidis, Surf. Coat. Technol. 204 (2010) 1661.
    • [12] J. Alami, P. Eklund, J. Emmerlich, O. Wilhelmsson, U. Jansson, H. Högberg, L. Hultman, U. Helmersson, Thin Solid Films 515 (2006) 1731.
    • [13] J. Alamia, K. Sarakinos, G. Mark, M. Wuttig, Appl. Phys. Lett. 89 (2006) 154104.
    • [14] G. West, P. Kelly, P. Barker, A. Mishra, J. Bradley, Plasma Process. Polym. 6 (2009) S543.
    • [15] D. Lundin, C. Huo, N. Brenning, M. A. Raadu, U. Helmersson, Deposition Rate Loss in High Power Impulse Magnetron Sputtering: Understanding through computational modelling, 54th Annual Technical Conference Proceedings, Chicago, IL April 16-21, 2011, 172.
    • [16] J. Lin, W. D. Sproul, J. J. Moore, Z. Wu, S. Lee, R. Chistyakov, B. Abraham, JOM 63 (2011) 49.
    • [17] J. Lin, W.D. Sproul, J. J. Moore, S. Lee, S. Myers, Surf. Coat. Technol. 205 (2011) 3226.
    • [18] J. Paulitsch, M. Schenkel, Th. Zufra, P.H. Mayrhofer, W.-D. Münz, Thin Solid Films 518 (2010) 5558.
    • [19] G. Greczynski, J. Lua, M. Johansson, J. Jensen, I. Petrov, J. E. Greene, L. Hultman, Vacuum 86 (2012) 1036.
    • [20] S. Yang, X. Li, K. E. Cooke, D. G. Teer, Appl. Surf. Sci. 258 (2012) 2062.
    • [21] J. Lin, J. J. Moore, W. D. Sproul, S. L. Lee, J. Vac. Sci. Technol. 29A (2011) 061301.
    • [22] M. Audronis, V. Bellido-Gonzalez, R. Brown, Thin Solid Films 520 (2011) 1571.
    • [23] Q. Luo, A. H. Jones, Surf. Coat. Technol. 205 (2010) 1403.
    • [24] Q. Luo, D. B. Lewis, P. Eh. Hovsepian, W. -D. Münz, J. Mater. Res. 19 (2004) 1093.
    • [25] L. Hultman, W-D. Münz, J. Musil, S. Kadlec, I. Petrov, and J. E. Greene, J. Vac. Sci. Technol. A9 (1991) 434.
    • [26] I. Petrov, F. Adibi, J. E. Greene, L. Hultman, and J. -E. Sundgren, Appl. Phys. Lett. 63 (1993) 36.
    • [27] K. P. Shaha, Y. T. Pei, C. Q. Chen, A. A. Turkin, D. I. Vainshtein, J. Th. M. De Hosson, Appl. Phys. Lett. 95 (2009) 223102.
    • [28] C. Schonjahn, M. Bamford, L. A. Donohue, D. B. Lewis, S. Forder, W.D. Münz, Surf. Coat. Technol. 125 (2000) 66.
    • [29] C. Schonjahn, L. A. Donohue, D. B. Lewis, W. D. Münz, R. D. Twesten, I. Petrov, J. Vac. Sci. Technol. A18 (2000) 1718.
    • [30] J. Paulitsch, P. H. Mayrhofer, W. -D. Münz, M. Schenkel, Thin Solid Films 517 (2008) 1239.
    • [31] M. Lattemann, A. P. Ehiasarian, J. Bohlmark, P. Å. O. Persson, U. Helmersson, Surf. Coat. Technol. 200 (2006) 6495.
    • [32] F. Magnus, A. S. Ingason, O. B. Sveinsson, S. Olafsson, J. T. Gudmundsson, Thin Solid Films 520 (2011) 1621.
    • [33] J. S. Chun, I. Petrov, J. E. Greene, J. Appl. Phys. 86 (1999) 3633.
    • [34] J. E. Greene, J. E. Sundgren, L. Hultman, I. Petrov, D. B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928.
    • [35] T. Q. Li, S. Noda, Y. Tshji, T. Ohsawa, H. Komiyama, J. Vac. Sci. Technol. A20 (2002) 583.
    • [36] R. Banerjjee, K. Singh, P. Ayyub, M.K. Totlani, A.K. Suri, J. Vac. Sci. Technol. A21 (2003) 310.
    • [37] G. Knuyt, C. Quaeyhaegens, J.D. Haen, and L. M. Stals, Surf. Coat. Technol. 76 (1995) 311.
    • [38] G. Knuyt, C. Quaeyhaegens, J. D Haen, and L. M. Stals, Thin Solid Films 258 (1995) 159.
    • [39] U. C. Oh, J. H. Je, J. Appl. Phys. 74 (1993) 1692.
    • [40] C. M. Cotell, J. K. Hirvonen, Surf. Coat. Technol. 81 (1996) 118.
    • [41] M.I. Jones, I.R. McColl, D. M. Grant, Surf. Coat. Technol. 132 (2000) 143.
    • [42] W. -D. Münz, D. B. Lewis, P. Eh. Hovsepian, C. Schönjahn, A. Ehiasarian, I. J. Smith, Surf. Eng. 17 (2001) 15.
    • [43] G. Farges, E. Beauprez, and M. C. Staine Catherine, Surf. Coat. Technol. 61 (1993) 238.
    • [44] A. J. Perry, V. Valvoda, D. Rafaja, Vacuum 45 (1994) 11.
    • [45] S. C. Yang, E. Eiemann, D. G. Teer, Surf. Coat. Technol. 188 (2004) 662.
    • [46] S. Yang, K. E. Cooke, X. Li, F. McIntosh, D. G. Teer, J. Phys D - Appl. Phys. 42 (2009) 104001.
    • [47] Y. J. Shi, S. Y. Long, S. C. Yang, F. S. Pan, Vacuum 84 (2010) 962.
    • [48] S. C. Yang, K. Cooke, A. Aramcharoen, P. Mativenga, D. Teer, Mater. Technol. 26 (2011) 20.
    • [49] Y. T. Pei, C. Q. Chen, K. P. Shaha, J. Th. M. De Hosson, J. W. Bradley, S. A. Voronin, M. Cada, Acta Mater. 56 (2008) 696.
    • [50] K. P. Shaha, Y. T. Pei, C. Q. Chen, A. A. Turkin, D. I. Vainshtein, App. Phys. Lett. 95 (2009) 223102.
    • [51] H. Oettel, R. Wiedemann, Surf. Coat. Technol. 76-77 (1995) 265.
    • [52] S. Imamura, H. Fukui, A. Shibata, N. Omiri, M. Setoyama, Surf. Coat. Technol. 202 (2007) 820.
    • [53] L. Zhou, C. Y. Wang, Z. Qin, Proceedings of The Institute of Mechanical Engineers Part B: Journal of Engineering Manufacture 223 (2009) 267.
    • [54] E. Vancoille, B. Blanpain, X. Ye, J. P. Celis, J. R. Roos, J. Mater. Res. 9 (1994) 992.
    • [55] M. Z. Huq, J. P. Celis, Wear 212 (1997) 151.
    • [56] E. Badisch, G.A. Fontalvo, M. Stoiber, C. Mitterer, Surf. Coat. Technol. 163-164 (2003) 585.
    • [57] Q. Luo, Tribo. Lett. 37 (2010) 529.
    • [58] Q. Luo, Z. Zhou, W. M. Rainforth, M. Bolton, Tribo. Lett. 34 (2009) 113.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok