LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Physical Society
Journal: Physical Review Special Topics. Accelerators and Beams
Languages: English
Types: Article
Subjects: Q1, QC, QC770-798, Nuclear and particle physics. Atomic energy. Radioactivity

Classified by OpenAIRE into

arxiv: Physics::Accelerator Physics, Physics::Instrumentation and Detectors, High Energy Physics::Experiment
The current paper discusses possible designs for a stand alone muon target for MuSR studies of condensed matter science. Considering the ISIS 7 mm graphite target as a reference, Geant4 simulations have been performed in order to optimize the target parameters with respect to muon and pion yield. Previous studies suggested that the muon production can be optimized by using a thin graphite slab target with an incident proton energy significantly lower than initially considered. Surface muon production obtained by firing an 800 MeV proton beam energy onto the target is simulated and potential improvements to the target material, geometry and angle orientation with respect to the incoming proton beam as well as an estimated performance of the muon target are presented in this paper. Implications for the ISIS muon facility are also discussed. A comparison of the pion production cross section between experimental data and three theoretical models for the latest four Geant4 versions is also included in this paper.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Yaouanc and P. Dalmas de RĂ©otier, Muon Spin Rotation, Relaxation and Resonance (Oxford University Press, Oxford, 2011).
    • [2] R. Heffner and K. Nagamine, Special issue on MuSR: Muon Spin Rotation, Relaxation or Resonance [J. Phys. Condens. Matter 16, 40 (2004)].
    • [3] S. L. Lee, S. H. Kilcoyne, and R. Cywinski, Muon Science (Muons in Physics, Chemistry and Materials) (Institute of Physics Publishing, Bristol, 1999).
    • [4] S. J. Blundell, Contemp. Phys. 40, 175 (1999).
    • [5] M. Burrard-Lucas et al., Nat. Mater. 12, 15 (2012).
    • [6] A. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hanson, T. Sarna, I. R. Gentle, and P. Meredith, Proc. Natl. Acad. Sci. U.S.A. 109, 8943 (2012).
    • [7] P. Dalmas de RĂ©otier, A. Yaouanc, Y. Chapuis, S. H. Curnoe, B. Grenier, E. Ressouche, C. Marin, J. Lago, C. Baines, and S. R. Giblin, Phys. Rev. B 86, 104424 (2012).
    • [8] V. K. Anand, D. T. Adroja, and A. D. Hillier, Phys. Rev. B 85, 014418 (2012).
    • [9] A. Singh, E. A. Davis, E. Mytilineou, and M. Kay, J. Non-Cryst. Solids 198-200, 692 (1996).
    • [10] NMI3/CONFORM Workshop (Cockcroft Institute, Daresbury, 2008).
    • [11] F. Foroughi, E. Morenzoni, T. Prokscha, M. Daum, K. Deiters, D. George, D. Herlach, C. Petitjean, D. Renker, and V. Vrankovic, Hyperfine Interact. 138, 483 (2001).
    • [12] J. L. Beveridge, J. Doornbos, and D. M. Garner, Hyperfine Interact. 32, 907 (1986).
    • [13] G. H. Eaton, The Muon Beamline at ISIS, Rutherford Appleton Laboratory, 1994.
    • [14] Y. Miyake et al., Nucl. Phys. B, Proc. Suppl. 149, 393 (2005).
    • [15] E. Cartlidge, Phys. World 19, 13 (2006).
    • [16] GEANT4-version 4.9.3.p02, CERN [http://geant4.cern.ch].
    • [17] A. Ribon, J. Apostolakis, A. Dotti, G. Folger, V. Ivanchenko, M. Kosov, V. Uzhinsky, D. H. Wright, Report No. CERN-LCGAPP-2010-02, 2010.
    • [18] G. Folger, V. N. Ivanchenko, and J. P. Wellisch, Eur. Phys. J. A 21, 407 (2004).
    • [19] A. Heikkinen, P. Kaitaniemi, and A. Boudard, J. Phys. Conf. Ser. 119, 032024 (2008).
    • [20] A. Bungau, R. Cywinski, C. Bungau, P. King, and J. Lord, Phys. Rev. ST Accel. Beams 16, 014701 (2013).
    • [21] M. Kelsey, SLAC (private communication).
    • [22] D. R. F. Cochran, P. N. Dean, P. A. M. Gram, E. A. Knapp, E. R. Martin, D. E. Nagle, R. B. Perkins, W. J. Shlaer, H. A. Thiessen, and E. D. Theriot, Phys. Rev. D 6, 3085 (1972).
    • [23] Y. Miyake et al., Physica B (Amsterdam) 326, 255 (2003).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article