LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
This research work aims at using a fully-coupled hydro-morphodynamical numerical solver to study the beachface evolution at the storm time-scale.\ud \ud The proposed model originates from that of Briganti et al. (2012a), who considered a system comprising the Nonlinear Shallow Water Equations and the Exner one (bed-load only). Suspended load, bed diffusion and infiltration are now included, following Zhu (2012) and Dodd et al. (2008) approaches.\ud \ud The original version of the numerical scheme (TVD-MCC) is modified to deal with the aforementioned additional physics, while the infiltration computation is implemented at the end of each time step (see Dodd et al., 2008). A new treatment for the wet / dry front is adopted, following the previous work of Hubbard & Dodd (2002).\ud \ud About model validation, enhanced results are obtained in both the fluvial dune and the dam break tests with respect to those of Briganti et al. (2012a). In the uniform bore test with bed-load the results confirm those of the previous version (see Zhu et al., 2012), while in the case with combined load they show an overall good agreement with the reference solution, even though the maximum run-up is underestimated. Single swash on fixed slope experiments are reproduced as well. In the impermeable case the results are improved on those of Briganti et al. (2011), while in the permeable one the overall performance is thought to be reasonable (better the uprush than the backwash).\ud \ud Although the maximum predicted inundations are smaller than measured, hydrodynamic results compare quite well with field data for real single swash events, thus confirming that one-dimensional, depth-averaged description of the swash is reasonable. The final computed bed changes show the correct order of magnitude but are generally underestimated and the predicted pattern is not always observed in the data. The sensitivity analyses indicate that this discrepancy is probably due to the initial (unknown) distributions of pre-suspended sediment concentration and velocity.\ud \ud The morphodynamic evolution of two beaches at the storm time-scale is studied. In the bed-load test, results compare very well with the reference ones from Dodd et al. (2008) and Sriariyawat (2009) and, in general, the sensitivity analyses for the permeable beach case confirm previous findings. In the combined load test, the Meyer-Peter and Müller formula is applied excluding the threshold for sediment movement. This assumption is not expected to have a significant impact on the morphodynamic evolution, in the limits of the chosen parameters and settings. Increased efficiency in the entrainment rate for suspended load is found to promote onshore transport, extending Pritchard & Hogg (2005) observation for single swash events to the case of multiple ones. Variations in the incoming wave period and height yield different final bed change profiles from the default one (three long-shore bars and generally deposition seaward and erosion landward), showing differences in the number of formed bars and in the morphodynamic pattern, with sometimes accretion in the upper beach.\ud \ud Beside this, new seaward boundary conditions (REBCs) are derived. They do not alter flow and bed level patterns generated by nonlinear standing waves on mobile bed, do converge to the hydrodynamic conditions on virtually-fixed bed and perform reasonably well in the demanding morphodynamic bore test.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2 Literature review 6 2.1 Swash zone physical background . . . . . . . . . . . . . . . . . . 6 2.2 Coastal hydro-morphodynamical solvers . . . . . . . . . . . . . 11 2.3 Morphodynamic single swash event . . . . . . . . . . . . . . . . 14 2.4 Morphodynamic multiple swash event . . . . . . . . . . . . . . . 17
    • 3 Governing equations 20 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 One-dimensional Nonlinear Shallow Water Equations . . . . . . 21 3.2.1 Bottom friction . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Exner equation for bed-load transport . . . . . . . . . . . . . . 23 3.4 Model development . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 Suspended sediment transport . . . . . . . . . . . . . . . 25 3.4.2 Bed diusion . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.3 Inltration . . . . . . . . . . . . . . . . . . . . . . . . . . 28
    • 4 Numerical solver 32 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 TVD-MCC from Briganti et al. (2012a) . . . . . . . . . . . . . . 33 4.3 Model development . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.1 Combined load TVD-MCC . . . . . . . . . . . . . . . . . 39 4.3.2 Inltration computation . . . . . . . . . . . . . . . . . . 43 4.3.3 Shoreline BCs . . . . . . . . . . . . . . . . . . . . . . . . 44
    • 5 Validation tests 48 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Fluvial dune test . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . 55 5.3 Dam break test . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.1 Dam break on virtually-xed bed . . . . . . . . . . . . . 57 5.3.2 Dam break on mobile bed . . . . . . . . . . . . . . . . . 62 5.3.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . 64 5.4 Uniform bore test . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4.1 Bed-load uniform bore . . . . . . . . . . . . . . . . . . . 71 5.4.2 Combined load uniform bore . . . . . . . . . . . . . . . . 75 5.4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . 79 5.5 Single swash test on xed slope . . . . . . . . . . . . . . . . . . 83 5.5.1 Single swash on impermeable xed slope . . . . . . . . . 85 5.5.2 Single swash on permeable xed slope . . . . . . . . . . . 89 5.5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . 91
    • 6 Numerical modelling of eld-scale single swash events 96 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
    • 7 Morphodynamic beach evolution at storm time-scale 136 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Mid-term beach evolution test with bed-load . . . . . . . . . . . 138 7.2.1 Mid-term impermeable beach evolution with bed-load . . 139 7.2.2 Mid-term permeable beach evolution with bed-load . . . 143 7.3 Mid-term beach evolution test with combined load . . . . . . . . 153 7.3.1 Sensitivity to thresholds for sediment movement . . . . . 157 7.3.2 Sensitivity to physical parameters . . . . . . . . . . . . . 159 7.3.3 Sensitivity to incoming wave characteristics . . . . . . . 163 7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 167
    • 8 Fully-coupled absorbing-generating seaward BCs 170 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.2 Derivation of the REBCs . . . . . . . . . . . . . . . . . . . . . . 171 8.3 Validation of the REBCs . . . . . . . . . . . . . . . . . . . . . . 178 8.3.1 Monochromatic wave test . . . . . . . . . . . . . . . . . 179 8.3.2 Morphodynamic bore test . . . . . . . . . . . . . . . . . 192 8.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 200
    • 9 Conclusions and recommendations 201 9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 205 2.1 Sketch of the catch-up and absorption, and collision interactions. 7 2.2 Sketch of the sediment transport processes during a swash cycle. 9 2.3 Peregrine & Williams (2001) single swash event. Sketch of initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
    • 3.1 Sketch of the variables involved in a generic hydrodynamic swash event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Sketch of the variables involved in a generic morphodynamic swash event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
    • 7.1 Mid-term impermeable beach evolution with bed-load. Assumptions, BCs, physical parameters and numerical settings. . . . . . 140 7.2 Mid-term permeable beach evolution with bed-load. Assumptions, BCs, physical parameters and numerical settings. . . . . . 143 7.3 Mid-term beach evolution with combined load. Assumptions, BCs, physical parameters and numerical settings. . . . . . . . . 156 Briganti, R., Dodd, N., Kelly, D. M., & Pokrajac, D. (2012a). An ecient and exible solver for the simulation of the morphodynamics of fast evolving ows on coarse sediment beaches. International Journal for Numerical Methods in Fluids , 69 , 859877. DOI: http://dx.doi.org/10.1002/fld.2618.
    • Briganti, R., Dodd, N., Pokrajac, D., & O'Donoghue, T. (2011). Non linear shallow water modelling of bore-driven swash: Description of the bottom boundary layer. Coastal Engineering , 58 , 463477. DOI: http://dx.doi. org/10.1016/j.coastaleng.2011.01.004.
    • Briganti, R., Dodd, N., Pokrajac, D., & O'Donoghue, T. (2012b). Numerical and experimental description of the ow, boundary layer and bed evolution in bore-driven swash on a coarse sediment beach. In P. Lynett, & J. McKee Smith (Eds.), Proceedings of 33rd International Conference on Coastal Engineering, Santander, Spain, 2012 (pp. currents33). Coastal Engineering Research Council Volume 33. DOI: http://dx.doi.org/10. 9753/icce.v33.currents.33.
    • Brocchini, M., & Baldock, T. E. (2008). Recent advances in modeling swash zone dynamics: Inuence of surf-swash interaction on nearshore hydrodynamics and morphodynamics. Reviews of Geophysics , 46 , 121. DOI: http://dx.doi.org/10.1029/2006RG000215.
    • Brocchini, M., Bernetti, R., Mancinelli, A., & Albertini, G. (2001). An ecient Burcharth, H. F., & Andersen, O. H. (1995). On the one-dimensional steady and unsteady porous ow equations. Coastal Engineering , 24 , 233257. DOI: http://dx.doi.org/10.1016/0378-3839(94)00025-S .
    • Butt, T., Russell, P., Puleo, J., & Masselink, G. (2005). The application of Bagnold-type sediment transport models in the swash zone. Journal of Coastal Research , 21 , 887895. DOI: http://dx.doi.org/10.2112/ 04-0210.1.
    • Caceres, I., & Alsina, J. M. (2012). A detailed, event-by-event analysis of suspended sediment concentration in the swash zone. Continental Shelf Research , 41 , 6176. DOI: http://dx.doi.org/10.1016/j.csr.2012.04. 004.
    • Castro Diaz, M. J., Fernandez-Nieto, E. D., & Ferreiro, A. M. (2008). Sediment transport models in shallow water equations and numerical approach by high order nite volume methods. Computers & Fluids , 37 , 299316. DOI: http://dx.doi.org/10.1016/j.compfluid.2007.07.017 .
    • Clarke, S., Dodd, N., & Damgaard, J. (2004). Modeling ow in and above a porous beach. Journal of Waterway, Port, Coastal and Ocean Engineering , 130 , 223233. DOI: http://dx.doi.org/10.1061/(ASCE) 0733-950X(2004)130:5(223).
    • Conley, D. C., & Grin, J. G. (2004). Direct measurements of bed stress under swash in the eld. Journal of Geophysical Research: Oceans (19782012) , 109 , 112. DOI: http://dx.doi.org/10.1029/2003JC001899.
    • Dodd, N., Stoker, A. M., Calvete, D., & Sriariyawat, A. (2008). On beach cusp formation. Journal of Fluid Mechanics , 597 , 145169. DOI: http: //dx.doi.org/10.1017/S002211200700972X.
    • Donat, R., & Marquina, A. (1996). Capturing shock reections: an improved ux formula. Journal of Computational Physics , 125 , 4258. DOI: http: //dx.doi.org/10.1006/jcph.1996.0078.
    • van Dongeren, A. R., & Svendsen, I. A. (1997). Absorbing-generating boundary condition for shallow water models. Journal of Waterway, Port, Coastal and Ocean Engineering , 123 , 303313. DOI: http://dx.doi.org/10.1061/ (ASCE)0733-950X(1997)123:6(303).
    • Dressler, R. F. (1952). Hydraulic resistance eect upon the dam-break functions. Journal of Research of the National Bureau of Standards , 49 , 217 225. URL: http://nvlpubs.nist.gov/nistpubs/jres/049/3/V49.N03. A08.pdf.
    • Elfrink, B., & Baldock, T. (2002). Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Coastal Engineering , 45 , 149167. DOI: http://dx.doi.org/10.1016/S0378-3839(02)00032-7 .
    • Erikson, L., Larson, M., & Hanson, H. (2005). Prediction of swash motion and run-up including the eects of swash interaction. Coastal Engineering , 52 , 285302. DOI: http://dx.doi.org/10.1016/j.coastaleng.2004.12. 001.
    • Falques, A., Montoto, A., & Iranzo, V. (1996). Bed-ow instability of the longshore current. Continental Shelf Research , 16 , 19271964. DOI: http: //dx.doi.org/10.1016/0278-4343(96)00031-3 .
    • Fraccarollo, L., & Capart, H. (2002). Riemann wave description of erosional dam-break ows. Journal of Fluid Mechanics , 461 , 183228. DOI: http: //dx.doi.org/10.1017/S0022112002008455.
    • Fredsłe, J., & Deigaard, R. (1992). Mechanics of coastal sediment transport . Volume 3 of Advanced Series on Ocean Engineering . Singapore: World Scientic Publishing.
    • Garcia-Navarro, P., Alcrudo, F., & Saviron, J. M. (1992). 1-D open-channel ow simulation using TVD-McCormack scheme. Journal of Hydraulic Engineering , 118 , 13591372. DOI: http://dx.doi.org/10.1061/(ASCE) 0733-9429(1992)118:10(1359).
    • Garnier, R. (2006). Nonlinear modelling of surf zone morphodynamical instabilities . Ph.D. thesis. Universitat PolitŁcnica de Catalunya.
    • Garnier, R., Calvete, D., Falques, A., & Dodd, N. (2008). Modelling the formation and the long-term behavior of rip channel systems from the deformation of a longshore bar. Journal of Geophysical Research , 113 , 118. DOI: http://dx.doi.org/10.1029/2007JC004632.
    • Harten, A., & Hyman, J. M. (1983). Self adjusting grid methods for one-dimensional hyperbolic conservation laws. Journal of Computational Physics , 50 , 235269. DOI: http://dx.doi.org/10.1016/0021-9991(83) 90066-9.
    • Hibberd, S., & Peregrine, D. (1979). Surf and run-up on a beach: a uniform bore. Journal of Fluid Mechanics , 96 , 323346. DOI: http://dx.doi.org/ 10.1017/S002211207900149X.
    • Hubbard, M. E., & Dodd, N. (2002). A 2D numerical model of wave runup and overtopping. Coastal Engineering , 47 , 126. DOI: http://dx.doi. org/10.1016/S0378-3839(02)00094-7.
    • Hudson, J. (2001). Numerical techniques for morphodynamical modelling . Ph.D. thesis. University of Reading.
    • Hudson, J., & Sweby, P. K. (2003). Formulations for numerically approximating hyperbolic systems governing sediment transport. Journal of Scientic Computing , 19 , 225252. DOI: http://dx.doi.org/10.1023/A: 1025304008907.
    • Hughes, M. G., Masselink, G., & Brander, R. W. (1997). Flow velocity and sediment transport in the swash zone of a steep beach. Marine Geology , 138 , 91103. DOI: http://dx.doi.org/10.1016/S0025-3227(97)00014-5 .
    • Incelli, G., Briganti, R., & Dodd, N. (2015a). Absorbinggenerating seaward boundary conditions for fully-coupled hydro-morphodynamical solvers. Coastal Engineering , 99 , 96108. DOI: http://dx.doi.org/10.1016/ j.coastaleng.2015.02.002.
    • Incelli, G., Dodd, N., Blenkinsopp, C. E., Zhu, F., & Briganti, R. (2015b). Morphodynamical Modelling of Field-Scale Swash Events. Coastal Engineering , accepted manuscript for 'Special Issue: Swash-zone Processes' . DOI: http://dx.doi.org/10.1016/j.coastaleng.2015.09.006 .
    • Inch, K., Masselink, G., Puleo, J. A., Russell, P., & Conley, D. C. (2015). Vertical structure of near-bed cross-shore ow velocities in the swash zone Kobayashi, N., & Johnson, B. D. (2001). Sand suspension, storage, advection, and settling in surf and swash zones. Journal of Geophysical Research , 106 , 93639376. DOI: http://dx.doi.org/10.1029/2000JC000557.
    • Kobayashi, N., Otta, A. K., & Roy, I. (1987). Wave reection and runup on rough slopes. Journal of Waterway, Port, Coastal and Ocean Engineering , 113 , 282298. DOI: http://dx.doi.org/10.1061/(ASCE) 0733-950X(1987)113:3(282).
    • Lanckriet, T., & Puleo, J. A. (2015). A semianalytical model for sheet ow layer thickness with application to the swash zone. Journal of Geophysical Research: Oceans , 120 , 13331352. DOI: http://dx.doi.org/10.1002/ 2014JC010378.
    • Lanckriet, T., Puleo, J. A., Masselink, G., Turner, I. L., Conley, D., Blenkinsopp, C., & Russell, P. (2014). A Comprehensive Field Study of Swash-Zone Processes, II: Sheet Flow Sediment Concentrations During Quasi-Steady Backwash. Journal of Waterway, Port, Coastal and Ocean Engineering , 140 , 2943. DOI: http://dx.doi.org/10.1061/(ASCE)WW. 1943-5460.0000209.
    • Liou, M.-S. (2012). Unresolved Problems by Shock Capturing: Taming the Overheating Problem. In Proceedings of 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, USA, 2012 . URL: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa. gov/20130000503.pdf.
    • Masselink, G., & Hughes, M. (1998). Field investigation of sediment transport in the swash zone. Continental Shelf Research , 18 , 11791199. DOI: http: //dx.doi.org/10.1016/S0278-4343(98)00027-2.
    • Masselink, G., & Hughes, M. G. (2003). Introduction to coastal processes & geomorphology . London: Hodder Arnold.
    • Masselink, G., & Li, L. (2001). The role of swash inltration in determining the beachface gradient: a numerical study. Marine Geology , 176 , 139156. DOI: http://dx.doi.org/10.1016/S0025-3227(01)00161-X .
    • Masselink, G., & Puleo, J. A. (2006). Swash-zone morphodynamics. Continental Shelf Research , 26 , 661680. DOI: http://dx.doi.org/10.1016/j. csr.2006.01.015.
    • Pintado-Patiaeo, J. C., Torres-Freyermuth, A., Puleo, J. A., & Pokrajac, D. (2015). On the role of inltration and exltration in swash zone boundary layer dynamics. Journal of Geophysical Research: Oceans , 120 , 63296350. DOI: http://dx.doi.org/10.1002/2015JC010806.
    • Puleo, J. A., Blenkinsopp, C., Conley, D., Masselink, G., Turner, I. L., Russell, P., Buscombe, D., Howe, D., Lanckriet, T., McCall, R., & Poate, T. (2014a). A Comprehensive Field Study of Swash-Zone Processes, I: Experimental Design with Examples of Hydrodynamic and Sediment Transport Measurements. Journal of Waterway, Port, Coastal and Ocean Engineering , 140 , 14 28. DOI: http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000210 .
    • Puleo, J. A., Holland, K. T., Plant, N. G., Slinn, D. N., & Hanes, D. M. (2003). Fluid acceleration eects on suspended sediment transport in the swash zone. Journal of Geophysical Research: Oceans (19782012) , 108 , 112. DOI: http://dx.doi.org/10.1029/2003JC001943.
    • Reniers, A. J. H. M., Gallagher, E. L., MacMahan, J. H., Brown, J. A., Rooijen, A. A., van Thiel de Vries, J. S. M., & van Prooijen, B. C. (2013). Observations and modeling of steep-beach grain-size variability. Journal of Geophysical Research: Oceans , 118 , 577591. DOI: http://dx.doi.org/10.1029/ 2012JC008073.
    • Reniers, A. J. H. M., Roelvink, J. A., & Thornton, E. B. (2004). Morphodynamic modeling of an embayed beach under wave group forcing. Journal of Geophysical Research: Oceans (19782012) , 109 , 122. DOI: http: //dx.doi.org/10.1029/2002JC001586.
    • van Rijn, L. C. (1982). Equivalent roughness of alluvial bed. Journal of Hydraulic Engineering , 108 , 12151218. URL: http://www. leovanrijn-sediment.com/papers/P1-1982a.pdf.
    • van Rijn, L. C. (1984). Sediment transport, Part II: Suspended load transport. Journal of Hydraulic Engineering , 110 , 16131641. DOI: http://dx.doi. org/10.1061/(ASCE)0733-9429(1984)110:11(1613) .
    • van Rijn, L. C. (2007a). Unied view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic Engineering , 133 , 649667. DOI: http://dx. doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649) .
    • van Rijn, L. C. (2007b). Unied view of sediment transport by currents and waves. II: Suspended transport. Journal of Hydraulic Engineering , 133 , 668689. DOI: http://dx.doi.org/10.1061/(ASCE) 0733-9429(2007)133:6(668).
    • Zaide, D. W., & Roe, P. L. (2012). Flux Functions for Reducing Numerical Shockwave Anomalies. In Proceedings of 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, USA, 2012 . URL: http://www.iccfd.org/iccfd7/assets/pdf/papers/ ICCFD7-2205_paper.pdf.
    • Zaide, D. W.-M. (2012). Numerical Shockwave Anomalies . Ph.D. thesis. The University of Michigan.
    • van der Zanden, J., Alsina, J. M., Caceres, I., Buijsrogge, R. H., & Ribberink, J. S. (2015). Bed level motions and sheet ow processes in the swash zone: Observations with a new conductivity-based concentration measuring technique (CCM+). Coastal Engineering , 105 , 4765. DOI: http://dx.doi.org/10.1016/j.coastaleng.2015.08.009 .
    • Zhu, F. (2012). 1D morphodynamical modelling of swash zone beachface evolution . Ph.D. thesis. The University of Nottingham.
    • Zhu, F., & Dodd, N. (2013). Net beach change in the swash zone: A numerical investigation. Advances in Water Resources , 53 , 1222. DOI: http://dx. doi.org/10.1016/j.advwatres.2012.10.002.
    • Zhu, F., & Dodd, N. (2015). The morphodynamics of a swash event on an erodible beach. Journal of Fluid Mechanics , 762 , 110140. DOI: http: //dx.doi.org/10.1017/jfm.2014.610.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article