Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sun, Hualei; Woodruff, Daniel N.; Cassidy, Simon J.; Allcroft, Genevieve M.; Sedlmaier, Stefan J.; Thompson, Amber L.; Bingham, Paul; Forder, Sue; Cartenet, Simon; Mary, Nicolas; Ramos, Silvia; Foronda, Francesca R.; Williams, Benjamin H.; Li, Xiaodong; Blundell, Stephen J.; Clarke, Simon J.
Publisher: American Chemical Society
Languages: English
Types: Preprint
Subjects: Condensed Matter - Superconductivity
Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li1-xFex(OH)Fe1-ySe (x ∼ 0.2; 0.02 < y < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (y < 0.05) and when the iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li1-xFex(OH) reservoir layer to fill vacancies in the selenide layer.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. J. Am. Chem.
    • Soc. 2008, 130, 3296-3297.
    • (2) Rotter, M.; Tegel, M.; Johrendt, D. Phys. Rev. Lett. 2008, 101, 107006.
    • (3) Canfield, P. C.; Bud'ko, S. L.; Ni, N.; Yan, J. Q; Kracher, A. Phys.
    • Rev. B 2009, 80, 060501(R).
    • (4) Wright, J. D.; Lancaster, T.; Franke, I.; Steele, A. J.; Möller, J. S.; Pitcher, M. J.; Corkett, A. J.; Free, D. G.; Parker, D. R.; Pratt, F. L.; Baker, P. J.; Clarke, S. J.; Blundell, S. J. Phys. Rev. B 2012, 85, 054503.
    • (5) Iimura, S. Matsuishi, S.; Sato, H.; Hanna, T.; Muraba, Y.; Kim, S. W.; Kim, J. E.; Takata, M.; Hosono, H. Nature Commun. 2012, 3, 943.
    • (6) Johrendt, D. J. Mater. Chem. 2011, 21, 13726-13736.
    • (7) Hsu, F.-C.; Luo, J.-Y.; Yeh, K.-W.; Chen, T.-K.; Huang, T.-W.; Wu, P. M.; Lee, Y.-C.; Huang, Y.-L.; Chu, Y.-Y.; Yan, D.-C.; Wu, M.-K.
    • Proc. Natl Acad. Sci. 2008, 105, 14262-14264.
    • (8) McQueen, T. M.; Huang, Q.; Ksenofontov, V.; Felser, C.; Xu, Q.; Zandbergen, H.; Hor, Y. S.; Allred, J.; Williams, A. J.; Qu, Q.; Checkelsky, J.; Ong. N. P.; Cava, R. J. Phys. Rev. B 2009, 79, 014522.
    • (9) Guo, J.-G.; Jin, S.-F.; Wang, G.; Wang, S.-C.; Zhu, K.-X.; Zhou, T.- T.; He, M.; Chen, X. L. Phys. Rev. B 2010, 82, 180520.
    • (10) Bacsa, J.; Ganin, A. Y.; Takabayashi, Y.; Christensen, K. E.; Prassides, K.; Rosseinsky, M. J.; Claridge, J. B. Chem. Sci. 2011, 2, 1054- 1058.
    • (11) Pomjakushin, V. Y.; Pomjakushina, E. V.; Krzton-Maziopa, A.; Conder, K.; Shermadini, Z. J. Phys: Condens. Matter 2011, 23, 156003.
    • (12) Texier, Y.; Deisenhofer, J.; Tsurkan, V.; Loidl, A.; Inosov, D. S.; Friemel, G.; Bobroff, J. Phys. Rev. Lett. 2012, 108, 237002.
    • (13) Shoemaker, D. P.; Chung, D. Y.; Claus, H.; Francisco, M. C.; Avci, S.; Llobet, A.; Kanatzidis, M. G. Phys. Rev. B 2012, 86, 184511.
    • (14) Carr, S. V.; Louca, D.; Siewenie, J.; Huang, Q.; Wang, A. F.; Chen, X. H.; Dai, P. C. Phys. Rev B 2014, 89, 134509.
    • (15) Ying, T. P.; Chen, X. L.; Wang, G.; Jin, S. F.; Zhou, T. T.; Lai, X. F.; Zhang, H.; Wang, W. Y. Sci. Rep. 2012, 2, 426.
    • (16) Ying, T.; Chen, X.; Wang, G.; Jin, S.; Lai, X.; Zhou, T.; Zhang, H.; Shen, S.; Wang, W. J. Am. Chem. Soc. 2013, 135, 2951-2954.
    • (17) Burrard-Lucas, M.; Free, D. G.; Sedlmaier, S. J.; Wright, J. D.; Cassidy, S. J.; Hara, Y.; Corkett, A. J.; Lancaster, T.; Baker, P. J.; Blundell, S. J.; Clarke, S. J. Nat. Mater., 2013, 12, 15-19.
    • (18) Scheidt, E.-W.; Hathawar, V. R.; Schmitz, D.; Dunbar, A.; Scherer, W.; Mayr, F.; Tsurkan, V.; Deisenhofer, J.; Loidl, A. Eur. Phys. J. B., 2012, 85, 279-283.
    • (19) Sedlmaier, S. J.; Cassidy, S. J.; Morris, R.; Drakopoulos, M.; Reinhard, C.; Moorhouse, S. J.; O'Hare, D.; Manuel, P.; Khalyavin, D.; Clarke, S. J.; J. Am. Chem. Soc., 2014, 136, 630-633.
    • (20) Lu, X. F.; Wang, N. Z.; Zhang, G. H.; Luo, X. G.; Ma, Z. M.; Lei, B.; Huang, F. Q.; Chen, X. H. Phys. Rev. B 2013, 89, 020507(R).
    • (21) Lu, X. F. Wang, N. Z.; Wu, H.; Wu, Y. P.; Zhao, D.; Zeng, X. Z.; Luo, X. G.; Wu, T.; Bao, W.; Zhang, G. H.; Huang, F. Q.; Huang, Q. Z.; Chen, X. H. Nat. Mater. 2015 doi:10.1038/nmat4155.
    • (22) Pachmayr, U.; Nitsche, F.; Luetkens, H.; Kamusella, S.; Brückner, F.; Sarkar, R.; Klauss, H.-H.; Johrendt, D.; Angew. Chem. Intl. Ed. 2015, 54, 293-297.
    • (23) Ziemkiewicz, P. F.; O'Neal, M.; Lovett, R. J. Mine Water Environ.
    • (24) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790.
    • (25) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. 2003, 36, 1487-1487.
    • (26) Coelho, A. A. TOPAS Academic, Version 5; Coelho Software, Brisbane, Australia, 2012.
    • (27) Blundell, S. J. Magnetism in Condensed Matter, Oxford University Press: Oxford, UK, 2001.
    • (28) Ravel, B.; Newville, M. J. Synchrotron Radiat. 2005, 12, 537-541.
    • (29) Minagawa, T. Memoirs of Osaka Kyoiku University, Series III, 1994, 43, 39-45.
    • (30) Sears, V. F. Neutron News, 1992, 3, 29-37.
    • (31) Lee, C. H.; Kihou, K.; Iyo, A.; Kito, H.; Shirage, P. M.; Eisaki, H.
    • Solid State Commun. 2012, 152, 644-648.
    • (32) Lindén, J. K. M.; Rautama, E.-L.; Karppinen, M.; Yamauchi, H.
    • Hyperfine Interact. 2012, 208, 133-136.
    • (33) Maddock, A. G. Mössbauer Spectroscopy. Horwood Publishing: Chichester, UK 1997.
    • (34) Cassidy, S. J., Ramos, S.; Clarke, S. J. Z. Anorg. Allg. Chem. 2014, 640, 2889-2896.
    • (35) Iadecola, A.; Joseph, B.; Simonelli, L.; Puri, A.; Mizuguchi, Y.; Takeya, H.; Takano, Y.; Saini, N. L. J. Phys.: Condens. Matter 2012, 24, 115701.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article