LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier BV
Journal: Journal of Environmental Chemical Engineering
Languages: English
Types: Article
Subjects: Phase transition pathways, Anionic effects on corrosion, QD, Groundwater, Iron nanoparticles, Cu and Zn sorption behaviour
This work has investigated the influence of common groundwater anions (Cl-, NO3-, SO42- and HCO3-) on the corrosion behaviour and associated removal of copper (Cu) and zinc (Zn) ions onto nanoscale zero-valent iron particles (nZVI). After 16 week exposure to solutions containing each anion at 10 mM concentrations, nZVI was observed to corrode into different iron (hydr)oxide phases (determined using XRD), depending upon the anion present: HNO3- produced goethite particles; NO3- produced predominantly magnetite/maghemite particles; both SO42- and Cl- produced a mixture of phases, including magnetite/maghemite, lepidocrocite and goethite. For solutions containing the different anions and 0.3 mM concentrations of Cu or Zn, near-total metal removal onto nZVI was recorded in the initial stages of the reaction (e.g. <24 hrs) for all systems tested. However, when Cl- and SO42- were also present significant subsequent desorption was recorded and attributed to the influence of anionic pitting corrosion. In contrast, no Cu or Zn desorption was recorded for batch systems containing NO3-, which was attributed to the enmeshment of Cu or Zn in a mixed-valent iron oxide shell. Results herein therefore demonstrate that NO3- could be utilised alongside nZVI to improve its long-term performance for in situ water treatment applications.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Henderson, A. Demond, Long-term performance of zero-valent iron permeable reactive barriers: a critical review, Environ. Eng. Sci. 24 (2007) 401-423, doi:http://dx.doi.org/10.1089/ees.2006.0071.
    • [2] J. Devlin, K. Allin, Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments, Environ. Sci. Technol. 39 (2005) 1868-1874, doi:http://dx.doi.org/10.1021/es040413q.
    • [3] M. Stuart, P. Chilton, D. Kinniburgh, D. Cooper, Screening for long-term trends in groundwater nitrate monitoring data, Q. J. Eng. Geol. Hydrogeol. 40 (2007) 361-376, doi:http://dx.doi.org/10.1144/1470-9236/07-040.
    • [4] T. Johnson, W. Fish, Y. Gorby, P. Tratnyek, Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface, J. Contam. Hydrol. 29 (1998) 379-398, doi:http://dx.doi.org/10.1016/S0169-7722(97)00063-6.
    • [5] Y. Liu, T. Phenrat, G. Lowry, Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution, Environ. Sci. Technol. 41 (2007) 7881-7887, doi:http://dx.doi.org/10.1021/ es0711967.
    • [6] P. Keith, C. Lai, P. Kjeldsen, I. Lo, Effect of groundwater inorganics on the reductive dechlorination of TCE by zero-valent iron, Water Air Soil Pollut. 162 (2005) 401-420, doi:http://dx.doi.org/10.1007/s11270-005-7420-7.
    • [7] O. Schlicker, M. Ebert, M. Fruth, M. Weidner, W. Wust, A. Dahmke, Degradation of TCE with iron: the role of competing chromate and nitrate reduction, Ground Water 38 (2000) 403-409, doi:http://dx.doi.org/10.1111/j.1745- 6584.2000.tb00226.x.
    • [8] J. Klausen, J. Ranke, R. Schwarzenbach, Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron, Chemosphere 44 (2001) 511-517, doi:http://dx.doi.org/10.1016/S0045- 6535(00)00385-4.
    • [9] B. Reinsch, B. Forsberg, L. Penn, C. Kim, G. Lowry, Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents, Environ. Sci. Technol. 44 (2010) 3455- 3461, doi:http://dx.doi.org/10.1021/es902924h.
    • [10] S. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol. 39 (2005) 1291-1298 http://www.ncbi.nlm.nih.gov/pubmed/15787369 (Accessed 21 October 2016).
    • [11] T. Lim, B. Zhu, Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination, Chemosphere 73 (2008) 1471-1477, doi: http://dx.doi.org/10.1016/j.chemosphere.2008.07.050.
    • [12] R. Crane, H. Pullin, J. Macfarlane, M. Silion, I. Popescu, M. Andersen, et al., Field application of iron and iron-nickel nanoparticles for the ex situ remediation of a uranium-bearing mine water effluent, J. Environ. Eng. 141 (2015) 1-12, doi: http://dx.doi.org/10.1061/(asce)ee.1943-7870.0000936.
    • [13] G. Glavee, K. Klabunde, C. Sorensen, G. Hadjipanayis, Chemistry of borohybride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders, Inorg. Chem. 34 (1995) 28-35.
    • [14] A. Grosvenor, B. Kobe, M. Biesinger, N. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal. 36 (2004) 1564-1574, doi:http://dx.doi.org/10.1002/sia.1984.
    • [15] J. Nurmi, P. Tratnyek, V. Sarathy, D. Baer, J. Amonette, K. Pecher, et al., Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol. 39 (2004) 1221-1230.
    • [16] H. Pullin, R. Springell, S. Parry, T. Scott, The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles, Chem. Eng. J. 308 (2017) 568-577, doi:http://dx.doi.org/10.1016/j.cej.2016.09.088.
    • [17] R. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, Weinheim, FRG, 2003, doi:http://dx. doi.org/10.1002/3527602097.
    • [18] L. Signorini, L. Pasquini, L. Savini, R. Carboni, F. Boscherini, E. Bonetti, et al., Size-dependent oxidation in iron/iron oxide core-shell nanoparticles, Phys. Rev. B. 68 (2003) 1-8, doi:http://dx.doi.org/10.1103/PhysRevB.68.195423.
    • [19] X. Li, W. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution X-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. C 111 (2007) 6939-6946, doi:http://dx. doi.org/10.1021/jp0702189.
    • [20] M. Farquhar, J. Charnock, K. England, D. Vaughan, Adsorption of Cu(II) on the (0001) plane of mica: a REFLEXAFS and XPS study, J. Colloid Interface Sci. 177 (1996) 561-567, doi:http://dx.doi.org/10.1006/jcis.1996.0070.
    • [21] M. Biesinger, L. Lau, A. Gerson, R. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci. 257 (2010) 887-898, doi:http://dx.doi.org/10.1016/j. apsusc.2010.07.086.
    • [22] M. Moreno, W. Morris, M. Alvarez, G. Duffó, Corrosion of reinforcing steel in simulated concrete pore solutions effect of carbonation and chloride content, Corros. Sci. 46 (2004) 2681-2699, doi:http://dx.doi.org/10.1016/j. corsci.2004.03.013.
    • [23] Z. Szklarska-Smialowska, The Pitting Corrosion of Iron in Sodium Sulphate, Pergamon, 1978, doi:http://dx.doi.org/10.1016/s0010-938x(78)80079-1.
    • [24] S. Traubenberg, R. Foley, The influence of chloride and sulfate ions on the corrosion of iron in sulfuric acid, J. Electrochem. Soc. 118 (1971) 1066-1070, doi:http://dx.doi.org/10.1149/1.2408248.
    • [25] K. Henn, D. Waddill, Utilization of nanoscale zero-valent iron for source remediation-a case study, Remediat. J. 16 (2006) 57-77, doi:http://dx.doi.org/ 10.1002/rem.20081.
    • [26] A. Agrawal, W. Ferguson, B. Gardner, J. Christ, J. Bandstra, P. Tratnyek, Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron, Environ. Sci. Technol. 36 (2002) 4326-4333, doi:http://dx. doi.org/10.1021/es025562s.
    • [27] J. Heuer, J. Stubbins, An XPS characterization of FeCO3 films from CO2 corrosion, Corros. Sci. 41 (1999) 1231-1243, doi:http://dx.doi.org/10.1016/ S0010-938X(98)00180-2.
    • [28] D. López, W. Schreiner, S. de Sánchez, S. Simison, The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization, Appl. Surf. Sci. 207 (2003) 69-85, doi:http://dx.doi.org/10.1016/S0169-4332(02) 01218-7.
    • [29] C. Su, R. Puls, T. Krug, M. Watling, S. O'Hara, J. Quinn, et al., Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years, Water Res. 47 (2013) 4095-4106, doi: http://dx.doi.org/10.1016/j.watres.2012.12.042.
    • [30] L. Carlson, U. Schwertmann, The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe(II) system at pH 6 and 7, Clay Miner. 25 (1990) 65-71, doi:http://dx.doi.org/10.1180/ claymin.1990.025.1.07.
    • [31] F. Cheng, R. Muftikian, Q. Fernando, N. Korte, Reduction of nitrate to ammonia by zero-valent iron, Chemosphere 35 (1997) 2689-2695, doi:http://dx.doi.org/ 10.1016/S0045-6535(97)00275-0.
    • [32] S. Choe, Y. Chang, K. Hwang, J. Khim, Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere 41 (2000) 1307-1311, doi:http://dx. doi.org/10.1016/S0045-6535(99)00506-8.
    • [33] K. Sohn, S. Kang, S. Ahn, M. Woo, S. Yang, Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation, Environ. Sci. Technol. 40 (2006) 5514-5519, doi:http://dx.doi.org/10.1021/es0525758.
    • [34] D. Mishra, J. Farrell, Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy, Environ. Sci. Technol. 39 (2005) 645-650, doi:http://dx.doi.org/10.1021/es049259y.
    • [35] A. Onyszko, C. Kapusta, J. Sieniawski, EXAFS study of iron nanoparticles with oxide shell, Arch. Mater. Sci. Eng. 28 (2007) 597-600.
    • [36] H. Kim, T. Kim, J. Ahn, K. Hwang, J. Park, T. Lim, et al., Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (FeBH and FeH2) in nitrate reduction, Chem. Eng. J. 197 (2012) 16-23, doi:http://dx.doi.org/ 10.1016/j.cej.2012.05.018.
    • [37] J. Nolan, K. Weber, Natural uranium contamination in major U.S. aquifers linked to nitrate, Environ. Sci. Technol. Lett. 2 (2015) 215-220, doi:http://dx. doi.org/10.1021/acs.estlett.5b00174.
    • [38] W. Yan, A. Herzing, C. Kiely, W. Zhang, Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water, J. Contam. Hydrol. 118 (2010) 96-104, doi:http://dx.doi.org/10.1016/j. jconhyd.2010.09.003.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.