Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects: R1
An important example of brain plasticity is the change in the structure of the orientation map in mammalian primary visual cortex in response to a visual environment consisting of stripes of one orientation. In principle there are many different ways in which the structure of a normal map could change to accommodate increased preference for one orientation. However, until now these changes have been characterised only by the relative sizes of the areas of primary visual cortex representing different orientations. Here we extend to the stripe-reared case a recently proposed Bayesian method for reconstructing orientation maps from intrinsic signal optical imaging data. We first formulated a suitable prior for the stripe-reared case, and developed an efficient method for maximising the marginal likelihood of the model in order to determine the optimal parameters. We then applied this to a set of orientation maps from normal and stripe-reared cats. This analysis revealed that several parameters of overall map structure, specifically the difference between wavelength, scaling and mean of the two vector components of maps, changed in response to stripe-rearing, which together give a more nuanced assessment of the effect of rearing condition on map structure than previous measures. Overall this work expands our understanding of the effects of the environment on brain structure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • L. M. Aitkin, M. M. Merzenich, D. R. Irvine, J. C. Clarey, and J. E. Nelson. Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J. Comp. Neurol., 252(2):175{85, 1986.
    • P. A. Anderson, J. Olavarria, and R. C. Van Sluyters. The overall pattern of ocular dominance bands in cat visual cortex. J. Neurosci., 8(6):2183{200, 1988.
    • C. Blakemore and G. F. Cooper. Development in the brain depends on the visual environment. Nature, 228:477{8, 1970.
    • G. Blasdel and G. Salama. Voltage-senstitive dyes reveal a modular organization in monkey striate cortex. Nature, 321:579{85, 1986.
    • T. Bonhoe er, D.-S. Kim, D. Malonek, D. Shoham, and A. Grinvald. Optical Imaging of the Layout of Functional Domains in Area 17 and Across the Area 17/18 Border in Cat Visual Cortex. Eur. J. Neurosci., 7, 1995.
    • M. F. Cardoso, R. L. Salcedo, and S. Feyo de Azevedo. The simplex-simulated annealing approach to continuous non-linear optimization. Comput. Chem. Eng., 20(9):1065{1080, 1996.
    • M. A. Carreira-Perpin~an, R. J. Lister, and G. J. Goodhill. A computational model for the development of multiple maps in primary visual cortex. Cerebral Cortex, 15(8):1222{1233, 2005.
    • X. Chen, M. Gabitto, Y. Peng, N. J. P. Ryba, and C. S. Zuker. A gustotopic map of taste qualities in the mammalian brain. Science, 333(6047):1262{6, 2011.
    • M. C. Crair, E. S. Ruthazer, D. C. Gillespie, and M. P. Stryker. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron, 19(2):307{18, 1997.
    • J. S. Espinosa and M. P. Stryker. Development and plasticity of the primary visual cortex. Neuron, 75(2):230{49, 2012.
    • K. J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, and J. Ashburner. Classical and Bayesian inference in neuroimaging: theory. NeuroImage, 16(2):465{83, 2002.
    • R. E. H and G. A. A tandem-lens epi uorescence macroscope { hundred-fold brightness advantage for wide- eld imaging. J. Neurosci. Meth., 36:127{37, 1991.
    • M. Hubener, D. Shoham, A. Grinvald, and T. Bonhoe er. Spatial relationships among three columnar systems in cat area 17. J. Neurosci., 17(23):9270{84, 1997.
    • J. J. Hunt, C. E. Giacomantonio, H. Tang, D. Mortimer, S. Ja er, V. Vorobyov, G. Ericksson, F. Sengpiel, and G. J. Goodhill. Natural scene statistics and the structure of orientation maps in the visual cortex. NeuroImage, 47(1):157{72, 2009.
    • D. J. Hunter. Gene-environment interactions in human diseases. Nat. Rev. Genet., 6(4): 287{98, 2005.
    • N. P. Issa, C. Trepel, and M. P. Stryker. Spatial frequency maps in cat visual cortex. J. Neurosci., 20(22):8504{14, 2000.
    • M. Kaschube, F. Wolf, T. Geisel, and S. Lowel. Genetic in uence on quantitative features of neocortical architecture. J. Neurosci., 22(16):7206{17, 2002.
    • Y. Li, H. Lu, P. Cheng, S. Ge, H. Xu, S. H. Shi, and Y. Dan. Clonally Related Visual Cortical Neurons Show Similar Stimulus Feature Selectivity. Nature, 486(7401):118{21, 2012.
    • J. H. Macke, S. Gerwinn, L. E. White, M. Kaschube, and M. Bethge. Gaussian process methods for estimating cortical maps. NeuroImage, 56(2):570{81, 2011.
    • G. Ohtsuki, M. Nishiyama, T. Yoshida, T. Murakami, M. Histed, C. Lois, and K. Ohki. Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron, 75 (1):65{72, 2012.
    • C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, 2006.
    • A. S. Rojer and E. L. Schwartz. Cat and monkey cortical columnar patterns modeled by bandpass- ltered 2D white noise. Biol. Cybern., 62:381{91, 1990.
    • F. Sengpiel, P. Stawinski, and T. Bonhoe er. In uence of experience on orientation maps in cat visual cortex. Nature Neurosci., 2(8):727{32, 1999.
    • C. J. Shatz and M. P. Stryker. Ocular dominance in layer IV of the cat's visual cortex and the e ects of monocular deprivation. J. Physiol., 281:267{83, 1978.
    • A. Shmuel and A. Grinvald. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci., 16(21):6945{64, 1996.
    • S. Tanaka, J. Ribot, K. Imamura, and T. Tani. Orientation-restricted continuous visual exposure induces marked reorganization of orientation maps in early life. NeuroImage, 30 (2):462{77, 2006.
    • K. Tomita, M. Sperling, S. B. Cambridge, T. Bonhoe er, and M. Hubener. A Molecular Correlate of Ocular Dominance Columns in the Developing Mammalian Visual Cortex. Cereb. Cortex, pages 1{11, 2012.
    • J. P. van Kleef, S. L. Cloherty, and M. R. Ibbotson. Complex cell receptive elds: evidence for a hierarchical mechanism. J. Physiol., 588:3457{70, 2010.
    • M. Weliky, W. H. Bosking, and D. Fitzpatrick. A systematic map of direction preference in primary visual cortex. Nature, 379(6567):725{8, 1996.
    • M. W. Woolrich. Bayesian inference in fMRI. NeuroImage, 62(2):801{10, 2012.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article