LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: QD
This work describes the development and the optimisation of microfluidic radiolabelling by using an Eckert & Ziegler device remotely controlled by a computer to perform the multistep synthesis of [18F]-fluoro-2-deoxy-D-glucose ([18F]-FDG). This device was then modified to control the fluidic transfers via flow of nitrogen and vacuum with the\ud aid of a new one-way cassette system by using different concentrations of water for the Kryptofix solution. A new route was also explored to perform florbetaben ([18F]-BAY94-\ud 9172), a potent Alzheimer’s disease PET tracer.\ud Chapter 1 is an overview of positron emission tomography techniques to synthesise tracers.\ud Chapter 2 is a brief introduction of the PETIC centre (Wales), where the fluoride-18 was delivered to produce [18F]-FDG.\ud Chapter 3 describes the reaction of the [K+⊂2.2.2]18F− complex on mannose triflate and the variety of products formed. The Eckert & Ziegler platform was furnished with a\ud cassette module and a microfluidic tubing to perform the radiolabelling fluorination of mannose triflate to the tetraacetate [18F]-deoxy-D-glucose and [18F]-FDG.\ud Chapter 4 is focused on the modifications on the Eckert & Ziegler modules by using 1-way cassettes to limit the use of mechanical valves. [18F]-FDG was synthesised via a semiautomated procedure by limiting the number of modules present in the hot cell.\ud Chapter 5 is an investigation for the preparation of several triethylene glycol derivatives following the syntheses of Kryptofix [2.2.2]. The use of triethylene glycol chain will be essential for the synthesis of the Florbetaben precursor.\ud The Chapter 6 is the exploration of a new synthetic route leading to the precursor of florbetaben.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bailey, D. L., Townsend, D. W., Valk, P. E., Maisey, M. N., Positron Emission Tomography, Springer, London, 2005.
    • Saha, G. B., Basics of PET imaging : physics, chemistry, and regulations, Springer, New York, 2010.
    • Plathow, C., Weber, W. A., Tumor cell metabolism imaging, J. Nucl. Med. 2008, 49, 43S-63S.
    • Hevesy, G., Adventures in radioisotope research, Vol. 1, Pergamon Press, New York, 1962.
    • Hevesy, G., Paneth, F. A., Manual of Radioactivity, Oxford University Press, London, 1938.
    • Wernick, M. N., Aarsvold, J. N., Emission Tomography: The Fundementals of PET and SPECT, Elsevier, London, 2004.
    • Sharp, P. F., Gemmel, H. G., Murray, A. D., Practical Nuclear Medecine, 3rd ed., Oxford University Press, London, 2005.
    • Miller, P. W., Long, N. J., Vilar, R., Gee, A. D., Synthesis of C-11, F-18, O-15, and N-13 Radiolabels for Positron Emission Tomography, Angew. Chem. Int. Ed. 2008, 47, 8998-9033.
    • Scott, P. J. H., Hockley, B. G., Kilbourn, M. R., Radiopharmaceuticals for Positron Emission Tomography, Vol. 1, John Wiley & Sons, New Jersey, 2012.
    • Rudin, M., Weissleder, R., Molecular imaging in drug discovery and development, Nat. Rev. Drug Discov. 2003, 2, 123-131.
    • Contag, P. R., Whole-animal cellular and molecular imaging to accelerate drug development, Drug Discov. Today 2002, 7, 555-562.
    • Chen, K., Conti, P. S., Target-specific delivery of peptide-based probes for PET imaging, Adv. Drug Delivery Rev. 2010, 62, 1005-1022.
    • Wängler, C., Kostikov, A., Zhu, J., Chin, J., Wängler, B., Schirrmacher, R., Silicon[18F]Fluorine Radiochemistry: Basics, Applications and Challenges, Appl. Sci. 2012, 2, 277-302.
    • Engl. 1972, 11, 179-199.
    • Anger, H. O., Scintillation Camera, Rev. Sci. Instrum. 1958, 29, 27-33.
    • Cherry, S. R., Sorenson, J. A., E., P. M., Physics in nuclear medicine, 4th ed., Grune & Stratton, Orlando, 1987.
    • Qaim, S. M., Nuclear data relevant to the production and application of diagnostic radionuclides, Radiochim. Acta 2001, 89, 223-232.
    • Rev. 2008, 108, 1501-1516.
    • Cai, L., Lu, S., Pike, V. W., Chemistry with [18F]Fluoride Ion, Eur. J. Org. Chem.
    • Park, B. K., Kitteringham, N. R., O'neill, P. M., Metabolism of fluorine-containing drugs, Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443-470.
    • Bohm, H. J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Muller, K., Obst-Sander, U., Stahl, M., Fluorine in medicinal chemistry, ChemBioChem 2004, 5, 637-643.
    • Isanbor, C., O'hagan, D., Fluorine in medicinal chemistry: A review of anti-cancer agents, J. Fluorine Chem. 2006, 127, 303-319.
    • Guillaume, M., Luxen, A., Nebeling, B., Argentini, M., Clark, J. C., Pike, V. W., Recommendations for Fluorine-18 Production, Appl. Radiat. Isot. 1991, 42, 749-762.
    • Shiue, C. Y., Salvadori, P. A., Wolf, A. P., Fowler, J. S., Macgregor, R. R., A new improved synthesis of 2-deoxy-2-[18F]fluoro-D-glucose from 18F-labeled acetyl hypofluorite, J. Nucl. Med. 1982, 23, 899-903.
    • Chirakal, R., Firnau, G., Schrobilgen, G. J., Mckay, J., Garnett, E. S., The synthesis of [18F]Xenon difluoride from [18F]fluoride gas, Appl. Radiat. Isot. 1984, 35, 401- 404.
    • Teare, H., Robins, E. G., Arstad, E., Luthra, S. K., Gouverneur, V., Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide, Chem. Commun. 2007, 2330-2332.
    • Block, E., Iyer, R., Grisoni, S., Saha, C., Belman, S., Lossing, F. P., Lipoxygenase inhibitors from the essential oil of garlic - Markonikov addition of the allydithio radical to olefins, J. Am. Chem. Soc. 1988, 110, 7813-7827.
    • Teare, H., Robins, E. G., Kirjavainen, A., Forsback, S., Sandford, G., Solin, O., Luthra, S. K., Gouverneur, V., Radiosynthesis and Evaluation of [18F]Selectfluor bis(triflate), Angew. Chem. Int. Ed. 2010, 49, 6821-6824.
    • Lee, E., Kamlet, A. S., Powers, D. C., Neumann, C. N., Boursalian, G. B., Furuya, T., Choi, D. C., Hooker, J. M., Ritter, T., A Fluoride-Derived Electrophilic LateStage Fluorination Reagent for PET Imaging, Science 2011, 334, 639-642.
    • Ido, T., Wan, C. N., Casella, V., Fowler, J. S., Wolf, A. P., Reivich, M., Kuhl, D. E., Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2- deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose, J. Label. Compd.
    • Radiopharm. 1978, 14, 175-183.
    • Ehrenkaufer, R. E., Potocki, J. F., Jewett, D. M., Simple Synthesis of F-18-Labeled 2-Fluoro-2-Deoxy-D-Glucose, J. Nucl. Med. 1984, 25, 333-337.
    • Dolbier Jr, W. R., Li, A.-R., Koch, C. J., Shiue, C.-Y., Kachur, A. V., [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure, Appl. Radiat. Isot. 2001, 54, 73-80.
    • Namavari, M., Bishop, A., Satyamurthy, N., Bida, G., Barrio, J. R., Regioselective radiofluorodestannylation with F-18 F2 and F-18 CH3COOF - A high-yield synthesis of 6-F-fluoro-L-dopa, Appl. Radiat. Isot. 1992, 43, 989-996.
    • Hess, E., Blessing, G., Coenen, H. H., Qaim, S. M., Improved target system for production of high purity [18F]fluorine via the 18O(p,n)18F reaction, Appl. Radiat.
    • Isot. 2000, 52, 1431-1440.
    • Füchtner, F., Preusche, S., Mäding, P., Zessin, J., Steinbach, J., Factors affecting the specific activity of [18F]fluoride from a [18O]water target, Nuklearmedizin 2008, 47, 116-119.
    • Mason, N. S., Mathis, C. A., Klunk, W. E., Positron emission tomography radioligands for in vivo imaging of Aβ plaques, J. Label. Compd. Radiopharm. 2013, 56, 89-95.
    • Zhang, W., Oya, S., Kung, M.-P., Hou, C., Maier, D. L., Kung, H. F., F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain, Nucl. Med. Biol. 2005, 32, 799-809.
    • Wang, H., Guo, X., Jiang, S., Tang, G., Automated synthesis of [18F]Florbetaben as Alzheimer's disease imaging agent based on a synthesis module system, Appl.
    • Radiat. Isot. 2013, 71, 41-46.
    • Rev. 1951, 49, 273-412.
    • Chun, J.-H., Morse, C. L., Chin, F. T., Pike, V. W., No-carrier-added [18F]fluoroarenes from the radiofluorination of diaryl sulfoxides, Chem. Commun.
    • Hjelstuen, O. K., Svadberg, A., Olberg, D. E., Rosser, M., Standardization of fluorine-18 manufacturing processes: New scientific challenges for PET, Eur. J.
    • Pharm. Biopharm. 2011, 78, 307-313.
    • Schlyer, D. J., Bastos, M. a. V., Alexoff, D., Wolf, A. P., Separation of [18F]fluoride from [18O]water using anion exchange resin, Appl. Radiat. Isot. 1990, 41, 531-533.
    • Brichard, L., Aigbirhio, F. I., An Efficient Method for Enhancing the Reactivity and Flexibility of [18F]Fluoride Towards Nucleophilic Substitution Using Tetraethylammonium Bicarbonate, Eur. J. Org. Chem. 2014, 2014, 6145-6149.
    • Yang, B. Y., Jeong, J. M., Lee, Y.-S., Lee, D. S., Chung, J.-K., Lee, M. C., Facile calculation of specific rate constants and activation energies of 18F-fluorination reaction using combined processes of coat-capture-elution and microfluidics, Tetrahedron 2011, 67, 2427-2433.
    • Wessmann, S. H., Henriksen, G., Wester, H. J., Cryptate mediated nucleophilic F-18- fluorination without azeotropic drying, Nuklearmedizin 2012, 51, 1-8.
    • Gomzina, N. A., Zaitsev, V. V., Krasikova, R. N., Optimization of nucleophilic fluorination step in the synthesis of various compounds labelled with fluorine-18 for their use as PET radiotracers, J. Label. Compd. Radiopharm. 2001, 44, S895-S897.
    • Lemaire, C. F., Aerts, J. J., Voccia, S., Libert, L. C., Mercier, F., Goblet, D., Plenevaux, A. R., Luxen, A. J., Fast Production of Highly Reactive No-CarrierAdded [18F]Fluoride for the Labeling of Radiopharmaceuticals, Angew. Chem. Int.
    • Ed. 2010, 49, 3161-3164.
    • He, P., Haswell, S. J., Pamme, N., Archibald, S. J., Advances in processes for PET radiotracer synthesis: Separation of [18F]fluoride from enriched [18O]water, Appl.
    • Radiat. Isot. 2014, 91, 64-70.
    • Wong, R., Iwata, R., Saiki, H., Furumoto, S., Ishikawa, Y., Ozeki, E., Reactivity of electrochemically concentrated anhydrous F-18 fluoride for microfluidic radiosynthesis of F-18-labeled compounds, Appl. Radiat. Isot. 2012, 70, 193-199.
    • Sadeghi, S., Liang, V., Cheung, S., Woo, S., Wu, C., Ly, J., Deng, Y., Eddings, M., Van Dam, R. M., Reusable electrochemical cell for rapid separation of [18F]fluoride from [18O]water for flow-through synthesis of 18F-labeled tracers, Appl. Radiat. Isot.
    • Chem. 2014, 1-7.
    • Lee, S. J., Oh, S. J., Chi, D. Y., Moon, D. H., Ryu, J. S., High Yielding F-18 Fluorination Method by Fine Control of the Base, Bull. Korean Chem. Soc. 2012, 33, 2177-2180.
    • Seo, J. W., Lee, B. S., Lee, S. J., Oh, S. J., Chi, D. Y., Fast and Easy Drying Method for the Preparation of Activated F-18 Fluoride Using Polymer Cartridge, Bull.
    • Korean Chem. Soc. 2011, 32, 71-76.
    • S., Ryu, J. S., Moon, D. H., Chi, D. Y., A New Class of SN2 Reactions Catalyzed by Protic Solvents:   Facile Fluorination for Isotopic Labeling of Diagnostic Molecules, J. Am. Chem. Soc. 2006, 128, 16394-16397.
    • Kim, H. W., Jeong, J. M., Lee, Y.-S., Chi, D. Y., Chung, K.-H., Lee, D. S., Chung, J.-K., Lee, M. C., Rapid synthesis of [18F]FDG without an evaporation step using an ionic liquid, Appl. Radiat. Isot. 2004, 61, 1241-1246.
    • Hamacher, K., Coenen, H. H., Stocklin, G., Efficient Stereospecific Synthesis of NoCarrier-Added 2- F-18 -Fluoro-2-Deoxy-D-Glucose using AminopolyetherSupported Nucleophilic Substitution, J. Nucl. Med. 1986, 27, 235-238.
    • Krasikova, R., PET Radiochemistry Automation: State of the Art and Future Trends in F-18-nucleophilic Fluorination, Curr. Org. Chem. 2013, 17, 2097-2107.
    • Rev. 2007, 107, 2300-2318.
    • Ichiishi, N., Brooks, A. F., Topczewski, J. J., Rodnick, M. E., Sanford, M. S., Scott, P. J. H., Copper-Catalyzed [18F]Fluorination of (Mesityl)(aryl)iodonium Salts, Org.
    • Lett. 2014, 16, 3224-3227.
    • Tredwell, M., Preshlock, S. M., Taylor, N. J., Gruber, S., Huiban, M., Passchier, J., Mercier, J., Génicot, C., Gouverneur, V., A General Copper-Mediated Nucleophilic 18F Fluorination of Arenes, Angew. Chem. Int. Ed. 2014, 53, 7751-7755.
    • Amaraesekera, B., Marchis, P. D., Bobinski, K. P., Radu, C. G., Czernin, J., Barrio, J. R., Michael Van Dam, R., High-pressure, compact, modular radiosynthesizer for production of positron emitting biomarkers, Appl. Radiat. Isot. 2013, 78, 88-101.
    • Isot. 2013, 78, 113-124.
    • Catala-Lopez, F., Crespo-Facorro, B., Vieta, E., Valderas, J. M., Valencia, A., Tabares-Seisdedos, R., Alzheimer's Disease and Cancer: Current Epidemiological Evidence for a Mutual Protection, Neuroepidemiology 2014, 42, 121-122.
    • Shan, M., Bujotzek, A., Abendroth, F., Wellner, A., Gust, R., Seitz, O., Weber, M., Haag, R., Conformational Analysis of Bivalent Estrogen Receptor Ligands: From Intramolecular to Intermolecular Binding, ChemBioChem 2011, 12, 2587-2598.
    • Budin  , G., Dimala  , M. M., Lamour, V., Oudet, P., Mioskowski, C., Meunier, S., Brino, L., Wagner, A., A Chemical Labeling Strategy for Proteomics under Nondenaturing Conditions, ChemBioChem 2010, 11, 79-82.
    • Lehn, J.-M., Skene, W. G., Polyhydrazones and polyimines exhibiting reversible formation and component exchange. Patent WO2004003044A2, 2004.
    • De Luca, L., Giacomelli, G., Masala, S., Porcheddu, A., Trichloroisocyanuric/TEMPO Oxidation of Alcohols under Mild Conditions:   A Close Investigation, J. Org. Chem. 2003, 68, 4999-5001.
    • Greene, T. W., Wuts, P. G. M., Protective groups in organuc synthesis, 3rd ed., Wiley-Blackwell, 1998.
    • Crouch, R. D., Selective deprotection of silyl ethers, Tetrahedron 2013, 69, 2383- 2417.
    • Jose, J., Ueno, Y., Burgess, K., Water-Soluble Nile Blue Derivatives: Syntheses and Photophysical Properties, Chem. Eur. J. 2009, 15, 418-423.
    • Bouzide, A., Sauvé, G., Highly selective silver(I) oxide mediated monoprotection of symmetrical diols, Tetrahedron Lett. 1997, 38, 5945-5948.
    • Carey, F. A., Sundberg, R. J., Chimie Organique avancée, 3ème ed., Deboeck Université, 1996.
    • Moreau, J., Marchand-Brynaert, J., Modular Synthesis of Bifunctional Linkers for Materials Science, Eur. J. Org. Chem. 2011, 1641-1644.
    • Vallabhajosula, S., Positron Emission Tomography Radiopharmaceuticals for Imaging Brain Beta-Amyloid, Semin. Nucl. Med. 2011, 41, 283-299.
    • Kung, H. F., The β-Amyloid Hypothesis in Alzheimer's Disease: Seeing Is Believing, ACS Med. Chem. Lett. 2012, 3, 265-267.
    • Am. Chem. Soc. 2013, 135, 15114-15128.
    • Ono, M., Wilson, A., Nobrega, J., Westaway, D., Verhoeff, P., Zhuang, Z. P., Kung, M. P., Kung, H. F., C-11-labeled stilbene derivatives as A beta-aggregate-specific PET imaging agents for Alzheimer's disease, Nucl. Med. Biol. 2003, 30, 565-571.
    • Wadsworth, W. S., Emmons, W. D., The Utility of Phosphonate Carbanions in Olefin Synthesis, J. Am. Chem. Soc. 1961, 83, 1733-1738.
    • Gester, S., Pietzsch, J., Wuest, F. R., Synthesis of 18F-labelled stilbenes from 4- [18F]fluorobenz-aldehyde using the Horner-Wadsworth-Emmons reaction, J. Label.
    • Compd. Radiopharm. 2007, 50, 105-113.
    • Beccalli, E., Contini, A., Trimarco, P., 3-Nitrocoumarin Amidines: A New Synthetic Strategy for Substituted [1]Benzopyrano[3,4-d]imidazol-4(3H)-ones, Eur. J. Org.
    • Chem. 2003, 3976-3984.
    • Quiroz-Florentino, H., Hernández-Benitez, R. I., Aviña, J. A., Burgueño-Tapia, E., Tamariz, J., Total Synthesis of Naturally Occurring Furan Compounds 5-{[(4- Hydroxybenzyl)oxy]methyl}-2-furaldehyde and Pichiafuran C, Synthesis 2011, 2011, 1106-1112.
    • Khartulyari, A. S., Kapur, M., Maier, M. E., Concise Strategy to the Core Structure of the Macrolide Queenslandon, Org. Lett. 2006, 8, 5833-5836.
    • Motoshima, K., Noguchi-Yachide, T., Sugita, K., Hashimoto, Y., Ishikawa, M., Separation of α-glucosidase-inhibitory and liver X receptor-antagonistic activities of phenethylphenyl phthalimide analogs and generation of LXRα-selective antagonists, Bioorg. Med. Chem. 2009, 17, 5001-5014.
    • Rosengren-Holmberg, J. P., Karlsson, J. G., Svenson, J., Andersson, H. S., Nicholls, I. A., Synthesis and ligand recognition of paracetamol selective polymers: semicovalent versus non-covalent molecular imprinting, Org. Biomol. Chem. 2009, 7, 3148-3155.
    • Wang, Z., Ding, Q., He, X., Wu, J., Palladium-catalyzed decarboxylative crosscoupling reaction of cinnamic acid with aryl iodide, Org. Biomol. Chem. 2009, 7, 863-865.
    • Dale, W. J., Hennis, H. E., Substituted styrenes. IV. Reaction of the vinylanisoles with p-nitrobenzenediazonium chloride in pyridine, J. Am. Chem. Soc. 1959, 81, 2143-2146.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    70
    70%
  • No similar publications.

Share - Bookmark

Cite this article