Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier BV
Languages: English
Types: Article
Subjects: R1
We focus on the importance of the spatiotemporal context of immune cell interactions in the pathogenesis of rheumatoid arthritis. We highlight gaps in our understanding of the disease process in rheumatoid arthritis. We outline potential approaches to address these gaps in our knowledge. We suggest the potential therapeutic impact of improved understanding. Despite the profound impact of biologics on the treatment of rheumatoid arthritis (RA), long lasting disease remission remains elusive. We propose that this is a consequence of failing to target the right molecular pathway in the most relevant patient group at the appropriate time and place in disease progression. A limitation to testing this approach is the availability of disease models representing the discrete steps in autoimmune pathogenesis. A particular example is the paucity of models to dissect the conditions permissive for the breach of self-tolerance, which would subsequently allow identification and testing of therapeutics for re-establishment of self-tolerance. We conclude that a detailed understanding of the location and timing of events leading to the systemic breach of self-tolerance and subsequent progression to tissue specific pathology are required if rational application of existing drugs and identification of novel targets is to be achieved. This will take the personalised medicine revolution into the realms of contextualised medicine, whereby the right drug is targeted to the right tissue, in the right patient, at the right time.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Firestein, G.S. (2003) Evolving concepts of rheumatoid arthritis. Nature 423, 356-361.
    • [2] Jorizzo, J.L. and Daniels, J.C. (1983) Dermatologic conditions reported in patients with rheumatoid arthritis. J. Am. Acad. Dermatol. 8, 439-457.
    • [3] Wolfe, F. and Michaud, K. (2004) Heart failure in rheumatoid arthritis: rates, predictors, and the effect of anti-tumor necrosis factor therapy. Am. J. Med. 116, 305-311.
    • [4] Geddes, D.M., Webley, M. and Emerson, P.A. (1979) Airways obstruction in rheumatoid arthritis. Ann. Rheum. Dis. 38, 222-225.
    • [5] Herbison, G.J., Ditunno, J.F. and Jaweed, M.M. (1987) Muscle atrophy in rheumatoid arthritis. J. Rheumatol. Suppl. 14 (Suppl. 15), 78-81.
    • [6] Seymour, H.E., Worsley, A., Smith, J.M. and Thomas, S.H. (2001) Anti-TNF agents for rheumatoid arthritis. Br. J. Clin. Pharmacol. 51, 201-208.
    • [7] Symmons, D. et al. (2002) The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. Rheumatology (Oxford) 41, 793-800.
    • [8] Michaud, K. and Wolfe, F. (2007) Comorbidities in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 21, 885-906.
    • [9] Hueber, A.J. et al. (2010) Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol. 184, 3336-3340.
    • [10] Lemos, H.P. et al. (2009) Prostaglandin mediates IL-23/IL-17-induced neutrophil migration in inflammation by inhibiting IL-12 and IFNgamma production. Proc. Natl. Acad. Sci. USA 106, 5954-5959.
    • [11] McInnes, I.B. et al. (1996) The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat. Med. 2, 175-182.
    • [12] McInnes, I.B., Leung, B.P., Sturrock, R.D., Field, M. and Liew, F.Y. (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat. Med. 3, 189-195.
    • [13] Feldmann, M. (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364-371.
    • [14] Breedveld, F.C. and Kalden, J.R. (2004) Appropriate and effective management of rheumatoid arthritis. Ann. Rheum. Dis. 63, 627-633.
    • [15] Barton, A., Thomson, W. and Ke, X. (2008) Wellcome Trust Case Control Consortium; YEAR Consortium; BIRAC Consortium. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat. Genet. 40, 1156-1159.
    • [16] Bluestone, J.A. (2011) Mechanisms of tolerance. Immunol. Rev. 241, 5-19, doi:10.1111/j.1600-065X.2011.01019.x.
    • [17] Gallegos, A.M. and Bevan, M.J. (2006) Central tolerance: good but imperfect. Immunol. Rev. 209, 290-296.
    • [18] Hogquist, K.A., Baldwin, T.A. and Jameson, S.C. (2005) Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772- 782.
    • [19] Basten, A. and Silveira, P.A. (2010) B-cell tolerance: mechanisms and implications. Curr. Opin. Immunol. 22, 566-574.
    • [20] Mueller, D.L. (2010) Mechanisms maintaining peripheral tolerance. Nat. Immunol. 11, 21-27.
    • [21] Sakaguchi, N. et al. (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454- 460.
    • [22] Michou, L. et al. (2007) Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc. Natl. Acad. Sci. 104, 1649-1654.
    • [23] Chung, S.A. and Criswell, L.A. (2007) PTPN22: its role in SLE and autoimmunity. Autoimmunity 40, 582-590.
    • [24] Bowes, J. and Barton, A. (2008) Recent advances in the genetics of RA susceptibility. Rheumatology 47, 399-402.
    • [25] The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 447, 661-678.
    • [26] Brunkow, M.E. et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68-73.
    • [27] Bennett, C.L. et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20-21.
    • [28] Nielen, M.M. et al. (2005) Antibodies to citrullinated human fibrinogen (ACF) have diagnostic and prognostic value in early arthritis. Ann. Rheum. Dis. 64, 1199-1204.
    • [29] Majka, D.S. et al. (2008) Duration of preclinical rheumatoid arthritis-related autoantibody positivity increases in subjects with older age at time of disease diagnosis. Ann. Rheum. Dis. 67, 801-807.
    • [30] Rantapaa-Dahlqvist, S. et al. (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741-2749.
    • [31] Brand, D.D., Latham, K.A. and Rosloniec, E.F. (2007) Collagen-induced arthritis. Nat. Protoc. 2, 1269-1275.
    • [32] Anthony, D.D. and Haqqi, T.M. (1999) Collagen-induced arthritis in mice: an animal model to study the pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 17, 240-244.
    • [33] Swanborg, R.H. (1995) Animal models of human disease. Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin. Immunol. Immunopathol. 77, 4-13.
    • [34] Kouskoff, V. et al. (1996) Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811-822.
    • [35] Monach, P. et al. (2007) The K/BxN mouse model of inflammatory arthritis: theory and practice. Methods Mol. Med. 136, 269-282.
    • [36] Raychaudhuri, S. et al. (2008) Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 40, 1216-1223.
    • [37] Seidl, C. et al. (1998) CTLA4 codon 17 dimorphism in patients with rheumatoid arthritis. Tissue Antigens 51, 62-66.
    • [38] Raychaudhuri, S. et al. (2009) Genetic variants at CD28, PRDM1 and CD2/ CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313- 1318.
    • [39] De Vita, S. et al. (2002) Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: evidence for a pathogenetic role of B cells. Arthritis Rheum. 46, 2029-2033.
    • [40] Kremer, J.M. et al. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907-1915.
    • [41] Gregersen, P.K. (1999) Genetics of rheumatoid arthritis: confronting complexity. Arthritis Res. 1, 37-44.
    • [42] Auger, I., Roudier, C., Guis, S., Balandraud, N. and Roudier, J. (2007) HLADRB1⁄0404 is strongly associated with anti-calpastatin antibodies in rheumatoid arthritis. Ann. Rheum. Dis. 66, 1588-1593.
    • [43] Alan, J.S., Jason, N. and Alexander, J.M. (1996) Cigarette smoking increases the risk of rheumatoid arthritis: results from a nationwide study of diseasediscordant twins. Arthritis Rheum. 39, 732-735.
    • [44] Klareskog, L., Padyukov, L., Rnnelid, J. and Alfredsson, L. (2006) Genes, environment and immunity in the development of rheumatoid arthritis. Curr. Opin. Immunol. 18, 650-655.
    • [45] Saag, K.G. et al. (1997) Cigarette smoking and rheumatoid arthritis severity. Ann. Rheum. Dis. 56, 463-469.
    • [46] Costenbader, K.H., Feskanich, D., Mandl, L.A. and Karlson, E.W. (2006) Smoking intensity, duration, and cessation, and the risk of rheumatoid arthritis in women. Am. J. Med. 119, 503.
    • [47] Stolt, P. et al. (2003) Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann. Rheum. Dis. 62, 835-841.
    • [48] Padyukov, L. et al. (2004) A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 50, 3085-3092.
    • [49] Klareskog, L. et al. (2006) A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38- 46.
    • [50] Woodruff, P.G. et al. (2005) A distinctive alveolar macrophage activation state induced by cigarette smoking. Am. J. Respir. Crit. Care Med. 172, 1383-1392.
    • [51] Hill, J.A. et al. (2003) Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritisassociated HLA-DRB1⁄0401 MHC Class II molecule. J. Immunol. 171, 538- 541.
    • [52] Maslowski, K.M. and Mackay, C.R. (2011) Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5-9.
    • [53] Wen, L. et al. (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109-1113.
    • [54] Eerola, E. et al. (1994) Intestinal flora in early rheumatoid arthritis. Rheumatology 33, 1030-1038.
    • [55] Maslowski, K.M. et al. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286.
    • [56] Mazmanian, S.K., Round, J.L. and Kasper, D.L. (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620-625.
    • [57] Wu, H.J. et al. (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815-827.
    • [58] Yoshitomi, H. et al. (2005) A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949-960.
    • [59] Lundberg, K. et al. (2008) Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum. 58, 3009-3019.
    • [60] Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. and Alfredsson, L. (2008) Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651-675.
    • [61] Wegner, N. et al. (2010) Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and a-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662-2672.
    • [62] Mikuls, T.R. et al. (2009) Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int. Immunopharmacol. 9, 38-42.
    • [63] Ogura, H. et al. (2008) Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628-636.
    • [64] Teitelbaum, S.L. (2000) Bone resorption by osteoclasts. Science 289, 1504- 1508.
    • [65] Schett, G. (2007) Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res. Ther. 9, 203.
    • [66] Gravallese, E.M. et al. (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 152, 943-951.
    • [67] Ellen, M.G. et al. (2000) Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 43, 250-258.
    • [68] Sato, K. et al. (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673-2682.
    • [69] Georg, S. et al. (2005) Analysis of the kinetics of osteoclastogenesis in arthritic rats. Arthritis Rheum. 52, 3192-3201.
    • [70] Muller-Ladner, U., Ospelt, C., Gay, S., Distler, O. and Pap, T. (2009) Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res. Ther. 9, 223-233.
    • [71] Cho, M.L. et al. (2007) Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/ CXCL8 in human rheumatoid synovial fibroblasts. Immunol. Lett. 108, 121- 128.
    • [72] Jung, Y.O. et al. (2007) Toll-like receptor 2 and 4 combination engagement upregulate IL-15 synergistically in human rheumatoid synovial fibroblasts. Immunol. Lett. 109, 21-27.
    • [73] Pierer, M. et al. (2004) Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by toll-like receptor 2 ligands. J. Immunol. 172, 1256- 1265.
    • [74] Fabia, B., Olivier, S., Renate, E.G., Steffen, G. and Diego, K. (2005) RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via toll-like receptor 3. Arthritis Rheum. 52, 2656- 2665.
    • [75] Gernot, M.K. et al. (1995) Comparative analysis of cathepsin l, cathepsin d, and collagenase messenger rna expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis, by in situ hybridization. Arthritis Rheum. 38, 976-984.
    • [76] Honda, S. et al. (2001) Expression of membrane-type 1 matrix metalloproteinase in rheumatoid synovial cells. Clin. Exp. Immunol. 126, 131-136.
    • [77] Thomas, P. et al. (2000) Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum. 43, 1226-1232.
    • [78] Lefevre, S. et al. (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414-1420.
    • [79] Hwang, S.Y. et al. (2004) IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Aktdependent pathways. Arthritis Res. Ther. 6, R120-R128.
    • [80] Mohammad, A.A. et al. (2007) Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 56, 1787-1797.
    • [81] Dayer, J.M., de Rochemonteix, B., Burrus, B., Demczuk, S. and Dinarello, C.A. (1986) Human recombinant interleukin 1 stimulates collagenase and prostaglandin E2 production by human synovial cells. J. Clin. Invest. 77, 645-648.
    • [82] Dayer, J.M., Beutler, B. and Cerami, A. (1985) Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 162, 2163-2168.
    • [83] Carol, H. et al. (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum. 46, 2587-2597.
    • [84] Case, J.P., Lafyatis, R., Remmers, E.F., Kumkumian, G.K. and Wilder, R.L. (1989) Transin/stromelysin expression in rheumatoid synovium. A transformationassociated metalloproteinase secreted by phenotypically invasive synoviocytes. Am. J. Pathol. 135, 1055-1064.
    • [85] Firestein, G.S. (2005) Immunologic mechanisms in the pathogenesis of rheumatoid arthritis. JCR 11 (3), S39-S44.
    • [86] Paul, P.T. et al. (1997) Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum. 40, 217-225.
    • [87] Diarmuid, M., Oliver, F. and Barry, B. (1996) Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum. 39, 115-124.
    • [88] Kinne, R., Stuhlmuller, B. and Burmester, G.R. (2007) Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res. Ther. 9, 224.
    • [89] Banchereau, J. and Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252.
    • [90] Shortman, K. and Naik, S.H. (2007) Steady-state and inflammatory dendriticcell development. Nat. Rev. Immunol. 7, 19-30.
    • [91] Thomas, R. et al. (1999) Dendritic cells and the pathogenesis of rheumatoid arthritis. J. Leukoc. Biol. 66, 286-292.
    • [92] Lutzky, V., Hannawi, S. and Thomas, R. (2007) Cells of the synovium in rheumatoid arthritis. Dendritic cells. Arthritis Res. Ther. 9.
    • [93] Leung, B.P. et al. (2002) A novel dendritic cell-induced model of erosive inflammatory arthritis: distinct roles for dendritic cells in T cell activation and induction of local inflammation. J. Immunol. 169, 7071-7077.
    • [94] Benson, R.A. et al. (2010) Identifying the cells breaching self-tolerance in autoimmunity. J. Immunol. 184, 6378-6385.
    • [95] Thomas, R., Davis, L.S. and Lipsky, P.E. (1994) Rheumatoid synovium is enriched in mature antigen-presenting dendritic cells. J. Immunol. 152, 2613-2623.
    • [96] Jongbloed, S.L. et al. (2009) Plasmacytoid dendritic cells regulate breach of self-tolerance in autoimmune arthritis. J. Immunol. 182, 963-968.
    • [97] Hadeiba, H. et al. (2008) CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat. Immunol. 9, 1253-1260.
    • [98] van Duivenvoorde, L.M. et al. (2007) Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J. Immunol. 179, 1506-1515.
    • [99] Leonie, M.v.-D. et al. (2004) Antigen-specific immunomodulation of collageninduced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis Rheum. 50, 3354-3364.
    • [100] Olivier, J. et al. (2009) Dendritic cells modulated by innate immunity improve collagen-induced arthritis and induce regulatory T cells in vivo. Immunology 126, 35-44.
    • [101] Moura, R.A. et al. (2010) Alterations on peripheral blood B-cell subpopulations in very early arthritis patients. Rheumatology (Oxford) 49, 1082-1092.
    • [102] Moura, R.A. et al. (2011) Cytokine pattern in very early rheumatoid arthritis favours B-cell activation and survival. Rheumatology (Oxford) 50, 278-282.
    • [103] Bugatti, S., Codullo, V., Caporali, R. and Montecucco, C. (2007) B cells in rheumatoid arthritis. Autoimmun. Rev. 6, 482-487.
    • [104] Verpoort, K.N. et al. (2006) Isotype distribution of ANTI-CYCLIC citrullinated peptide antibodies in undifferentiated arthritis and rheumatoid arthritis reflects an ongoing immune response. Arthritis Rheum. 54, 3799-3808.
    • [105] Manzo, A. et al. (2005) Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur. J. Immunol. 35, 1347-1359.
    • [106] Takemura, S. et al. (2001) Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072-1080.
    • [107] Seyler, T.M. et al. (2005) BLyS and APRIL in rheumatoid arthritis. J. Clin. Invest. 115, 3083-3092.
    • [108] Leadbetter, E.A. et al. (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603-607.
    • [109] Duddy, M.E., Alter, A. and Bar-Or, A. (2004) Distinct profiles of human B cell effector cytokines: a role in immune regulation? J. Immunol. 172, 3422- 3427.
    • [110] Edwards, J.C.W. and Cambridge, G. (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 6, 394-403.
    • [111] Schubert, D., Maier, B., Morawietz, L., Krenn, V. and Kamradt, T. (2004) Immunization with glucose-6-phosphate isomerase induces T celldependent peripheral polyarthritis in genetically unaltered mice. J. Immunol. 172, 4503-4509.
    • [112] Maffia, P. et al. (2004) Inducing experimental arthritis and breaking selftolerance to joint-specific antigens with trackable, ovalbumin-specific T cells. J. Immunol. 173, 151-156.
    • [113] Duarte, J., Agua-Doce, A., Oliveira, V.G., Fonseca, J.E. and Graca, L. (2010) Modulation of IL-17 and Foxp3 expression in the prevention of autoimmune arthritis in mice. PLoS ONE 5, e10558.
    • [114] Toh, M.-L. and Miossec, P. (2007) The role of T cells in rheumatoid arthritis: new subsets and new targets. Curr. Opin. Rheumatol. 19, 284-288.
    • [115] Shen, H., Goodall, J.C. and Hill Gaston, J.S. (2009) Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 60, 1647-1656.
    • [116] Cascao, R. et al. (2010) Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res. Ther. 12, R196.
    • [117] De Smedt, T. et al. (1996) Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413-1424.
    • [118] Cella, M., Engering, A., Pinet, V., Pieters, J. and Lanzavecchia, A. (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782-787.
    • [119] Jenkins, M.K. et al. (2001) In vivo activation of antigen-specific CD4 T cells. Annu. Rev. Immunol. 19, 23-45.
    • [120] Mempel, T.R., Henrickson, S.E. and von Andrian, U.H. (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154-159.
    • [121] Kearney, E.R., Pape, K.A., Loh, D.Y. and Jenkins, M.K. (1994) Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327-339.
    • [122] McHeyzer-Williams, M.G. and Davis, M.M. (1995) Antigen-specific development of primary and memory T cells in vivo. Science 268, 106-111.
    • [123] Garside, P. et al. (1998) Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96-99.
    • [124] Rush, C.M. et al. (2009) Characterization of CD4+ T-cell-dendritic cell interactions during secondary antigen exposure in tolerance and priming. Immunology 128, 463-471.
    • [125] Zinselmeyer, B.H. et al. (2005) In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J. Exp. Med. 201, 1815-1823.
    • [126] Smith, K.M., Brewer, J.M., Mowat, A.M., Ron, Y. and Garside, P. (2004) The influence of follicular migration on T-cell differentiation. Immunology 111, 248-251.
    • [127] King, C., Tangye, S.G. and Mackay, C.R. (2008) T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741- 766.
    • [128] Vinuesa, C.G. et al. (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452-458.
    • [129] Platt, A.M. et al. (2010) Abatacept limits breach of self-tolerance in a murine model of arthritis via effects on the generation of T follicular helper cells. J. Immunol. 185, 1558-1567.
    • [130] Garrood, T. and Pitzalis, C. (2006) Targeting the inflamed synovium: the quest for specificity. Arthritis Rheum. 54, 1055-1060.
    • [131] George, A.J., Lee, L. and Pitzalis, C. (2003) Isolating ligands specific for human vasculature using in vivo phage selection. Trends Biotechnol. 21, 199-203.
    • [132] Sweeney, S.E. and Firestein, G.S. (2004) Rheumatoid arthritis: regulation of synovial inflammation. Int. J. Biochem. Cell Biol. 36, 372-378.
    • [133] Sun, H.B. (2010) Mechanical loading, cartilage degradation, and arthritis. Ann. N.Y. Acad. Sci. 1211, 37-50.
    • [134] Al-Allaf, A.W., Sanders, P.A., Ogston, S.A. and Marks, J.S. (2001) A case control study examining the role of physical trauma in the onset of rheumatoid arthritis. Rheumatology 40, 262-266.
    • [135] Murakami, M. et al. (2011) Local microbleeding facilitates IL-6- and IL-17- dependent arthritis in the absence of tissue antigen recognition by activated T cells. J. Exp. Med. 208, 103-114.
    • [136] Hamada, T. et al. (2008) Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis. Arthritis Rheum. 58, 2675-2685.
    • [137] Cho, Y.G., Cho, M.L., Min, S.Y. and Kim, H.Y. (2007) Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun. Rev. 7, 65-70.
    • [138] Holmdahl, R., Jansson, L., Larsson, A. and Jonsson, R. (1990) Arthritis in DBA/1 mice induced with passively transferred type II collagen immune serum. Immunohistopathology and serum levels of anti-type II collagen autoantibodies. Scand. J. Immunol. 31, 147-157.
    • [139] Stuart, J.M. and Dixon, F.J. (1983) Serum transfer of collagen-induced arthritis in mice. J. Exp. Med. 158, 378-392.
    • [140] Zhu, P. et al. (2007) Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collageninduced arthritis. Clin. Immunol. 122, 75-84.
    • [141] Michaelsson, E., Andersson, M., Engstrom, A. and Holmdahl, R. (1992) Identification of an immunodominant type-II collagen peptide recognized by T cells in H-2q mice: self tolerance at the level of determinant selection. Eur. J. Immunol. 22, 1819-1825.
    • [142] Brand, D.D. et al. (1994) Characterization of the T cell determinants in the induction of autoimmune arthritis by bovine alpha 1(II)-CB11 in H-2q mice. J. Immunol. 152, 3088-3097.
    • [143] Rosloniec, E.F., Whittington, K.B., Zaller, D.M. and Kang, A.H. (2002) HLA-DR1 (DRB1⁄0101) and DR4 (DRB1⁄0401) use the same anchor residues for binding an immunodominant peptide derived from human type II collagen. J. Immunol. 168, 253-259.
    • [144] Huan, J. et al. (2008) MHC Class II derived recombinant T cell receptor ligands protect DBA/1LacJ mice from collagen-induced arthritis. J. Immunol. 180, 1249-1257.
    • [145] Huan, J. et al. (2004) Monomeric recombinant TCR ligand reduces relapse rate and severity of experimental autoimmune encephalomyelitis in SJL/J mice through cytokine switch. J. Immunol. 172, 4556-4566.
    • [146] Vandenbark, A.A. et al. (2003) Recombinant TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35-55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in HLA-DR2 transgenic mice. J. Immunol. 171, 127-133.
    • [147] Rankin, A.L. et al. (2008) CD4+ T cells recognizing a single self-peptide expressed by APCs induce spontaneous autoimmune arthritis. J. Immunol. 180, 833-841.
    • [148] Hata, H. et al. (2004) Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J. Clin. Invest. 114, 582-588.
    • [149] Nickdel, M.B. et al. (2009) Dissecting the contribution of innate and antigenspecific pathways to the breach of self-tolerance observed in a murine model of arthritis. Ann. Rheum. Dis. 68, 1059-1066.
    • [150] McBride, H.J. (2010) Nuclear imaging of autoimmunity: focus on IBD and RA. Autoimmunity 43, 539-549, doi:10.3109/08916931003674766.
    • [151] Kijowski, R. (2010) Clinical cartilage imaging of the knee and hip joints. AJR Am. J. Roentgenol. 195, 618-628.
    • [152] Caetano-Lopes, J. et al. (2010) Chronic arthritis leads to disturbances in the bone collagen network. Arthritis Res. Ther. 12, R9.
    • [153] Qian, X. et al. (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83- 90.
    • [154] Llewellyn, M.E., Barretto, R.P., Delp, S.L. and Schnitzer, M.J. (2008) Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454, 784-788.
    • [155] Barretto, R.P. et al. (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17, 223-228.
    • [156] Pedersen, M. et al. (2006) Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res. Ther. 8, R133.
    • [157] Kallberg, H. et al. (2009) Alcohol consumption is associated with decreased risk of rheumatoid arthritis: results from two Scandinavian case-control studies. Ann. Rheum. Dis. 68, 222-227.
    • [158] Mandl, L.A., Costenbader, K.H., Simard, J.F. and Karlson, E.W. (2009) Is birthweight associated with risk of rheumatoid arthritis? Data from a large cohort study. Ann. Rheum. Dis. 68, 514-518.
    • [159] Bhatia, S.S. et al. (2007) Rheumatoid factor seropositivity is inversely associated with oral contraceptive use in women without rheumatoid arthritis. Ann. Rheum. Dis. 66, 267-269.
    • [160] Pikwer, M. et al. (2009) Breast feeding, but not use of oral contraceptives, is associated with a reduced risk of rheumatoid arthritis. Ann. Rheum. Dis. 68, 526-530.
    • [161] Bengtsson, C. et al. (2005) Socioeconomic status and the risk of developing rheumatoid arthritis: results from the Swedish EIRA study. Ann. Rheum. Dis. 64, 1588-1594.
    • [162] Chang, S.C., Laden, F., Puett, R. and Karlson, E.W. (2008) Geographic variation in rheumatoid arthritis incidence among women in the United States. Arch. Intern. Med. 15, 1664-1670.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

  • WT

Cite this article