LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Cambridge University Press
Languages: English
Types: Article
Subjects:
Human serum high-density lipoprotein (HDL) is necessary and sufficient for the short-term maintenance of Plasmodium falciparum in in vitro culture. However, at high concentrations it is toxic to the parasite. A heat-labile component is apparently responsible for the stage-specific toxicity to parasites within infected erythrocytes 12-42 h after invasion, i.e. during trophozoite maturation. The effects of HDL on parasite metabolism (as determined by nucleic acid synthesis) are evident at about 30 h after invasion. Parasites treated with HDL show gross abnormalities by light and electron microscopy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • BRUCE, M. c. & DAY, K. P. (2002). Cross-species regulation of malaria parasitaemia in the human host. Current Opinion in Microbiology 5, 431-437.
    • DAY, K. P., KARAMALIS, F., THOMPSON, J., BARNES, D. A . , PETERSON, C , BROWN, H . , BROWN, G. V. & KEMP, D. J. (1993). Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0-3 Megabase region of chromosome 9. Proceedings of the National Academy of Sciences, USA 90, 8292-8296.
    • DESJARDINS, R. E . , CANFIELD, C. J . , HAYNES, J. D. & CHULAY, J. D. (1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrobial Agents and Chemotherapy 16, 710-718.
    • F I T C H , c. D., CHEN, Y. F. & CAI, G. z. (2003). Chloroquineinduced masking of a lipid that promotes ferriprotoporphyrin I X dimerization in malaria. Journal of Biological Chemistry 278, 22596-22599.
    • F R E E M A N , R. R. & H O L D E R , A. A. (1983). Light microscope morphology of Plasmodium falciparum during a synchronized growth cycle in vitro. Annals of Tropical Medicine and Parasitology 77, 95-96.
    • GRELLIER, P., RIGOMIER, D . , CLAVEY, V . , FRUCHART, J. C. & SCHREVEL, J. (1991). L i p i d traffic between high density lipoproteins and Plasmodium falciparum infected red blood cells. Journal of Cell Biology 112, 267-277.
    • HAJDUK, S. L . , MOORE, D. R., VASUDEVACHARYA, J . , SIQUEIRA, H . , TORRI, A. F., T Y T L E R , E. M . & ESKO, J. D. (1989). L y s i s of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. Journal of Biological Chemistry 264, 5210-5217.
    • H A L D A R , K. (1992). L i p i d transport in Plasmodium. Infectious Agents of Disease 1, 254-262.
    • HALDAR, K . , DEAMORIM, A. F. & CROSS, G. A. M . (1989). Transport of fluorescent phospholipid analogs from the erythrocyte-membrane to the parasite in Plasmodium falciparum-intected cells. Journal of Cell Biology 108, 2183-2192.
    • K W I A T K O W S K I , D. & N O W A K , M. (1991). Periodic and chaotic host-parasite interactions in human malaria. Proceedings of the National Academy of Sciences, USA 88, 5111-5113.
    • L A M B R O S , c. & V A N D E R B U R G , J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 113-139.
    • MITAMURA, T . , HANADA, K . , K O - M I T A M U R A , E. P., NISHIJIMA, M. & HORII, T. (2000). Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. Parasitology International 49, 219-229.
    • PASVOL, G., WILSON, R. J. M . , SMALLEY, M . E. & BROWN, J. (1978). Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Annals of Tropical Medicine and Parasitology 72, 87-88.
    • PIPER, K. P., ROBERTS, D. J. & D A Y , K. P. (1999). Plasmodium falciparum: analysis of the antibody specificity to the surface of the trophozoite-infected erythrocyte. Experimental Parasitology 91, 161-169.
    • TAHIR, A. E., MALHOTRA, P. & CHAUHAN, V. S. (2003). Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-intected human erythrocytes. Malaria Journal 2 , 1 1 .
    • T R A C E R , w. & J E N S O N , J. B. (1976). H u m a n malaria parasites i n continuous culture. Science 193, 674-675.
    • T R O T T E I N , F. & C O W M A N , A. F. (1995). T h e primary structure of a putative phosphatidylethanolaminebinding protein from Plasmodium falciparum. Molecular and Biochemical Parasitology 70, 235-239.
    • VIAL, H. J., ELDIN, P., TIELENS, A. G. & VAN HELLEMOND, J. J. (2003). Phospholipids i n parasitic protozoa. Molecular and Biochemical Parasitology 126, 143-154.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • WT

Cite this article