LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: genetic structures, eye diseases
In the primary visual cortex of many mammals, ocular dominance columns segregate information from the two eyes. Yet under controlled conditions, most human observers are unable to correctly report the eye to which a stimulus has been shown, indicating that this information is lost during subsequent processing. This study investigates whether eye-of-origin information is available in the pattern of electrophysiological activity evoked by visual stimuli, recorded using EEG and decoded using multivariate pattern analysis. Observers (N=24) viewed sine-wave grating and plaid stimuli of different orientations, shown to either the left or right eye (or both). Using a support vector machine, eye-of-origin could be decoded above chance at around 140 and 220ms post stimulus onset, yet observers were at chance for reporting this information. Other stimulus features, such as binocularity, orientation, spatial pattern, and the presence of interocular conflict (i.e. rivalry), could also be decoded using the same techniques, though all of these were perceptually discriminable above chance. A control analysis found no evidence to support the possibility that eye dominance was responsible for the eye-of-origin effects. These results support a structural explanation for multivariate decoding of electrophysiological signals – information organised in cortical columns can be decoded, even when observers are unaware of this information.

Share - Bookmark

Cite this article