Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
This paper is analyzing the operation of a standalone wind turbine system with variable speed Permanent Magnet Synchronous Generator (PMSG) and a system for storing energy during wind speed and load variations. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. Initially, the holistic model of the entire system is achieved, including the PMSG, the boost converter and the storage system. The power absorbed by the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. The main purpose is to supply 230 V/50 Hz domestic appliances through a single-phase inverter. The simulation results, validated by experimental testing, show a good prediction of the electrical parameter waveforms. The control system is implemented on a dSPACE DS1103 real-time\ud board. Furthermore, the results confirm the stability of the supply.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] R. A. Mastromauro, M. Liserre, A. Dell'Aquila, „Control Issues in Single-Stage Photovoltaic Systems: MPPT, Current and Voltage Control”, IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 241 - 254, May 2012.
    • [2] C. Liu, K. T. Chau, X. Zhang, „An Efficient Wind-Photovoltaic Hybrid Generation System Using Doubly Excited Permanent-Magnet Brushless Machine”, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 831-839, March 2010.
    • [3] M. P. Kazmierkowski, M. Jasinski, G. Wrona, „DSP-Based Control of Grid-Connected Power Converters Operating Under Grid Distortions”, IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 204-211, May 2011.
    • [4] P. Palensky, D. Dietrich, „Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads”, IEEE Trans. Ind. Informat., vol. 7, no. 3, pp. 381 - 388, Aug. 2011.
    • [5] V. C. Gungor, D. Sahin, T. Kocak, et al., „Smart Grid Technologies: Communication Technologies and Standards”, IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529 - 539, Nov. 2011.
    • [6] S. Wencong, H. Eichi, Z. Wente, et al. „A Survey on the Electrification of Transportation in a Smart Grid Environment”, IEEE Trans. Ind. Informat., vol. 8, no. 1, pp. 1 - 10, Feb. 2012.
    • [7] R. Teodorescu, M. Lissere, and P. Rodriguez, Grid Converter for Photovoltaic and Wind Power Systems, IEEE-Wiley, New York, 2011.
    • [8] E. Monmasson, L. Idkhajine, M.N. Cirstea, et al., „FPGAs in Industrial Control Applications”, IEEE Trans. Ind. Informat., vol. 7, no. 2, pp. 224 - 243, May 2011.
    • [9] A. Jamal, D. Venkata, M. Andrew, „A review of power converter topologies for wind generators”, Journal of Renewable Energy, vol. 32, pp. 2369-238, 2007.
    • [10] M. H. Nehrir, C. Wang, et al., „A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications”, IEEE Trans. Sustain. Energy, vol. 2, no.4, pp. 392-402, Oct. 2011.
    • [11] B. Singh, S. Singh, et al., „Comprehensive Study of Single-Phase ACDC Power Factor Corrected Converters With High-Frequency Isolation”, IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540 - 556, Nov. 2011.
    • [12] L. Barote, C. Marinescu, „Storage Analysis for Stand-Alone Wind Energy Applications”, Proc. IEEE OPTIM, 2010, pp. 1180 - 118.
    • [13] L. Barote, R. Weissbach, R. Teodorescu, C. Marinescu, M. Cirstea, „Stand-Alone Wind System with Vanadium Redox Battery Energy Storage”, Proc. IEEE OPTIM, 2008, pp. 407 - 412.
    • [14] B. Fleck, M. Huot, „Comparative life-cycle assessment of a small wind turbine for residential off-grid use”, Journal of Renewable Energy, vol. 34, pp. 2688-2696, 2009.
    • [15] M. J. Vasallo, J. M. Andújar, et al., „A Methodology for Sizing Backup Fuel-Cell/Battery Hybrid Power Systems”, IEEE Trans. Ind. Electron, vol. 57, no. 6, pp. 1964-1975, June 2010.
    • [16] M. Swierczynski, R. Teodorescu, et al., „Overview of the Energy Storage Systems for Wind Power Integration Enhancement”, Proc. IEEE ISIE, 2010, pp. 3749 - 3756.
    • [17] S. M. Lukic, J. Cao, et al., A. Emadi „Energy Storage Systems for Automotive Applications”, IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 2258-2267, June 2008.
    • [18] Y. Chang, X. Mao, et al., „Lead-acid battery use in the development of renewable energy systems in China”, Journal of Power Sources, vol. 191, pp. 176-183, 2009.
    • [19] T. Ackermann, Wind Power in Power Systems, John Wiley & Sons Ltd: England, 2005.
    • [20] Y. Ming, L. Gengyin, Z. et al., „Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration”, Proc. IEEE Power Eng. Society General Meeting, 2007.
    • [21] I. Boldea, Variable Speed Generators-The Electric Generators Handbook, CRC Press: USA, 2006.
    • [22] L. G. Gonzalez, E. Figueres, et al., „Synchronization Techniques Comparison for Sensorless Control Applied to PMSG”, Proc. of ICREPQ, April 2009.
    • [23] B. Cheng, T. R. Tesch, „Torque Feedforward Control Technique for Permanent-Magnet Synchronous Motors”, IEEE Trans. Ind. Electron, vol. 57, no. 3, pp. 969-974, March 2010.
    • [24] Y.P. Hsieh, J.F. Chen, et al. „A Hybrid Control Algorithm for Voltage Regulation in DC-DC Boost Converter ”, IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 2530 - 2538, June 2008.
    • [25] I. Serban, C. Marinescu, „A sensorless control method for variablespeed small wind turbines”, Journal of Renewable Energy, vol. 43, pp. 256-266, 2012.
    • [26] J. Chen, J. Chen, „New Overall Power Control Strategy for VariableSpeed Fixed-Pitch Wind Turbines within the Whole Wind Velocity Range”, IEEE Trans. Ind. Electron., no.99, 2012.
    • [27] M. Durr, A. Cruden, et al., „Dynamic model of a lead acid battery for use in a domestic fuel cell”, Journal of Power Sources, vol. 161, pp. 1400-1411, 2006.
    • [28] *** SimPowerSystems, www.mathworks.com.
    • [29] Y. Chen, C. Yang, and T. Kuo, “Energy-Efficient task synchronization for real-time systems,” IEEE Trans. Ind. Informat., vol. 6, no. 3, pp. 287-301, Aug. 2010.
    • [30] Y. Wu, G. Buttazzo, et al., “Parameter selection for real-time controllers in resource-constrained systems,” IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 610-620, Nov. 2010.
    • [31] L. A. C. Lopes, J. Lhuilier, et al., „A Wind Turbine Emulator that Represents the Dynamics of the Wind Turbine Rotor and Drive Train”, Proc. of IEEE PESC, 2005, pp. 2092 - 2097.
    • [32] Historical weather and climate data for Sulina: http://www.energymatters.com.au/climate-data/?q=sulina&find=Search
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article