Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: BF
The overarching aim of this thesis was to gain a better understanding of the involvement of the rodent hippocampus in configural learning and memory. To do so, I developed novel behavioural procedures to assess (i) configural integration of where and when reinforcers are delivered during conventional conditioning procedures, and (ii) configural processes involving standard stimuli during sensory preconditioning procedures. Firstly, it was important to establish that rats with hippocampal lesions are able to learn about where or when a reinforcer is presented (Experiments 1-2). I then developed appetitive and aversive conditioning procedures that enable the formation of configural memories involving what happened where and when to be studied (Experiments 3-4), and assessed the performance of rats with hippocampal lesions in these procedures (Experiments 5-7). These experiments revealed that rats with hippocampal lesions are not impaired at acquiring configural memories for patterns of stimulation requiring the integration of contextual and temporal cues. In order to further investigate the role of the hippocampus in configural learning and memory novel sensory preconditioning procedures were developed using more standard stimuli (Experiment 8). In this case, hippocampal lesions abolished a sensory preconditioning effect that was based on mediated configural learning (Experiment 9). The findings presented in this thesis suggest that the hippocampus is not involved in the acquisition of configural memories generally, or in the integration of the components of episodic-like memory. However, the results add to evidence suggesting that the hippocampus does play a general role in retrieval-mediated learning about configurations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Theoretical implications ......................................................................................... 103 6.3.1. Episodic memory in animals ...................................................................... 103 6.3.2. The role of the hippocampus in configural/episodic memory .................. 104 Dumigan, N. M., Lin, T. E., Good, M., & Honey, R. C. (2015). Configural integration of temporal and contextual information in rats: Automated measurement in appetitive and aversive preparations. Learning & Behavior, 43, 179-187.
    • Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampalanterior thalamic axis. Behavioural and Brain Sciences, 22, 425- 489.
    • Aggleton, J. P., & Pearce, J. M. (2001). Neural systems underlying episodic memory: insights from animal research. Philosophical Transactions of the Royal Society of London Series B - Biological Sciences, 356, 1467-1482.
    • Albasser, M. M., Amin, E., Lin, T. E., Iordanova, M. D., & Aggleton, J. P. (2012). Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behavioral Neuroscience, 126, 659-669.
    • Albasser, M. M., Dumont, J. R., Amin, E., Holmes, J. D., Horne, M. R., Pearce, J. M., & Aggleton, J. P. (2013). Association rules for rat spatial learning: The importance of the hippocampus for binding item identity with item location. Hippocampus, 23, 1162- 1178.
    • Allen, T. A., & Fortin, N. J. (2013). The evolution of episodic memory. Proceedings of the National Academy of Sciences, 110, 10379-10386.
    • Alvarado, M. C., & Rudy, J. W. (1995). A comparison of kainic acid + colchichine and ibotenic acid induced hippocampal formation damage on four configural tasks. Behavioral Neuroscience, 109, 1052-1062.
    • Aschoff, J. (1984). Circadian timing. Annals of the New York Academy of Sciences, 423, 442- 468.
    • Babb, S. J., & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16, 1317- 1321.
    • Bannerman, D. M., Rawlins, J. N., McHugh, S. B., Deacon, R. M., Yee, B. K., Zhang, W. N., Pothuizen, H. H., & Feldon, J. (2004). Regional dissociations within the hippocampusmemory and anxiety. Neuroscience & Biobehavioral Reviews, 28, 273-283.
    • Barker, G. R. I., & Warburton, E. C. (2011). When is the hippocampus involved in recognition memory? Journal of Neuroscience, 31, 10721-10731.
    • Barkus, C., McHugh, S. B., Sprengel, R., Seeburg, P. H., Rawlins, J. N. P., & Bannerman, D. M. (2010). Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion. European Journal of Pharmacology, 626, 49-56.
    • Bird, L. R., Roberts, W. A., Abroms, B., Kit, K. A., & Crupi, C. (2003). Spatial memory for food hidden by rats (rattus norvegicus) on the radial maze: studies of memory for where, what and when. Journal of Comparative Psychology, 117, 176-187.
    • Brogden, W. J. (1939). Sensory pre-conditioning. Journal of Experimental Psychology, 25, 323-332.
    • Burgess, N., Maguire, E.A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35, 625-641.
    • Cain, S. W., Ko, C. H., Chalmers, J. A., & Ralph, M. R. (2004). Time of day modulation of conditioned place preference in rats depends on the strain of rat used. Neurobiology of Learning & Memory, 81, 217-220.
    • Cassel, J. C., Cassel, S., Galani, R., Kelche, C., Will, B., & Jarrard, L. (1998). Fimbria-fornix vs selective hippocampal lesions in rats: effects on locomotor activity and spatial learning and memory. Neurobiology of Learning & Memory, 69, 22-45.
    • Clark, R. E., Broadbent, N. J., & Squire, L. R. (2005). Hippocampus and remote spatial memory in rats. Hippocampus, 15, 260-272.
    • Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272-272.
    • Coutureau, E., Killcross, S. A., Good, M., Marshall, V. J., Ward-Robinson, J., & Honey, R. C. (2002). Acquired equivalence and distinctiveness of cues: II. Neural manipulations and their implications. Journal of Experimental Psychology;: Animal Behaviour Processes, 28, 388-396.
    • Chiba, A. A., Kesner, R. P., & Reynolds, A. M. (1994). Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex. Behavioral & Neural Biology, 61, 123-131.
    • Davidson, T. L, McKeman, M. G. & Jarrard, L. E. (1993). Hippocampal lesions do not impair negative patterning: a challenge to configural association theory. Behavioral Neuroscience, 107, 227-234.
    • Day, M., Langston, R., & Morris, R. G. M. (2003). Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature, 424, 205-209.
    • Ergorul, C., & Eichenbaum, H. (2004). The hippocampus and memory for “what”, “where” and “when”. Learning and Memory, 11, 397-405.
    • Fanselow, M. S. (1982). The postshock activity burst. Animal Learning & Behavior, 10, 448- 454.
    • Fortin, N.J., Agster, K.L., & Eichenbaum, H. (2002). Critical role for the hippocampus in memory for sequences of events. Nature Neuroscience, 5, 458-462.
    • Gallagher, M., & Holland, P. C. (1992). Preserved configural learning and spatial learning impairment in rats with hippocampal damage. Hippocampus, 2, 81- 88.
    • Good, M. A., Barnes, P., Staal, V., McGregor, A., & Honey, R. (2007). Context- but not familiarity-dependent forms of object recognition are impaired following excitotoxic lesions in rats. Behavioral Neuroscience, 121, 218-223.
    • Good, M., & Honey, R. C. (1991). Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience, 105, 499-509.
    • Grand, C., & Honey, R. C. (2008). Solving XOR. Journal of Experimental Psychology: Animal Behavior Processes, 34, 486-493.
    • Honey, R. C., Watt, A., & Good, M. (1998b). Hippocampal lesions disrupt an associative mismatch process. The Journal of Neuroscience, 18, 2226-2230.
    • Hunsaker, M. R., Lee, B., & Kesner, R. P. (2008). Evaluating the temporal context of episodic memory: the role of CA3 and CA1. Behavioural Brain Research, 188, 310-315.
    • Iordanova, M. D., Good, M. A., & Honey, R. (2008). Configural learning without reinforcement: Integrated memories for correlates of what, where and when. The Quarterly Journal of Experimental Psychology, 61, 1785-1792.
    • Iordanova, M., Burnett, D. J., Aggleton, J. P., Good, M., & Honey, R. C. (2009). The role of the hippocampus in mnemonic integration and retrieval. European Journal of Neuroscience, 30, 2177-2189.
    • Iordanova, M. D., Burnett, D., Good, M., & Honey, R. C. (2011a). Pattern memory involves both elemental and configural processes: Evidence from the effects of hippocampal lesions. Behavioral Neuroscience, 125, 567-577.
    • Iordanova, M. D., Good, M., & Honey, R. C. (2011b). Retrieval-mediated learning involving episodes requires synaptic plasticity in the hippocampus. Journal of Neuroscience, 31, 7156-7162.
    • Jacobs, N. S., Allen, T. A., Nguyen, N., & Fortin, N. J. (2013). Critical role of the hippocampus in memory for elapsed time. The Journal of Neuroscience, 33(34), 13888-13893.
    • Kumaran, D., Hassabis, D., Spiers, H. J., Vann, S. D., Vargha-Khadem, F., & Maguire, E. A. (2007). Impaired spatial and non-spatial configural learning in patients with hippocampal pathology. Neuropsychologia, 45, 2699-2711.
    • Langston, R. F., Stevenson, C. H., Wilson, C. L., Saunders, I., & Wood, E. R. (2010). The role of hippocampal subregions in memory for stimulus associations. Behavioural Brain Research, 215, 275-291.
    • Li, J-S. & Chao, Y-S. (2008). Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats. Neurobiology of Learning and Memory, 89,192-198.
    • Lin, T. E., & Honey, R. C. (2010). Analysis of the content of configural representations: The role of associatively evoked and trace memories. Journal of Experimental Psychology: Animal Behavior Processes, 36, 501-505.
    • Lin, T. E., & Honey, R. C. (2011). Encoding specific associative memory: Evidence from behavioral and neural manipulations. Journal of Experimental Psychology: Animal Behavior Processes, 37, 317-329.
    • Lin, T. E., Dumigan, N. M., Dwyer, D. M., Good, M. A., & Honey, R. C. (2013). Assessing the encoding specificity of associations with sensory preconditioning procedures. Journal of Experimental Psychology: Animal Behavior Processes, 39, 67-75.
    • MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71, 737-749.
    • Munn, R. G., & Bilkey, D. K. (2012). The firing rate of hippocampal CA1 place cells is modulated with a circadian period. Hippocampus 22, 1325-1337.
    • O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171-175.
    • O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford, England: Clarendon Press.
    • Olton, D. S, Becker, J. T., & Handelmann, G.E. (1979). Hippocampus, space and memory. Behavioral Brain Sciences, 2, 313-365.
    • O'Reilly, R. C., & Rudy, J. W. (2000). Computational principles of learning in the neocortex and hippocampus. Hippocampus, 10, 389-397.
    • O'Reilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychological Review, 108, 311-345.
    • Pavlov, I. P., & Anrep, G. V. (1927). Conditioned reflexes; an investigation of the physiological activity of the cerebral cortex. London, England: Oxford University Press.
    • Richards, W. (1973). Time reproductions by H.M. Acta Psychologica, 37, 279-282.
    • Roberts, W. A., Feeney, M. C., Macpherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: is it based on when or how long ago? Science, 320(5872), 113-115.
    • Rudy, J. W., & Sutherland, R. J. (1995). Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus, 5, 375- 389.
    • Saksida, L. M., Bussey, T. J., Buckmaster, C. A., & Murray, E. A. (2007). Impairment and facilitation of transverse patterning after lesions of the perirhinal cortex and hippocampus, respectively. Cerebral Cortex, 17, 108-115.
    • Sanderson, D. J., Pearce, J. M., Kyd, R. J., & Aggleton, J. P. (2006). The importance of the rat hippocampus for learning the structure of visual arrays. European Journal of Neuroscience, 24, 1781-1788.
    • Tulving, E. (1972). Episodic and semantic memory. In: Organization of memory, ed. Tulving, E. & Donaldson, W.. Academic Press.
    • Tulving, E., & Markowitsch, H. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8, 198-204.
    • Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, & W., Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376-380.
    • Wagner, A.R. (1981). SOP: A model of automatic memory processing in animal behavior. In N.E. Spear & R.R. Miller (Eds.) Information processing in animals: Memory mechanisms (pp 5-48). Hillsdale, NJ: Lawrence Erlbaum Associates.
    • Wagner, A. R. (2003). Context-sensitive elemental theory. Quarterly Journal of Experimental Psychology, 56B, 7-29.
    • Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning (pp. 301-336). New York: Academic Press.
    • Ward-Robinson, J., Coutureau, E., Good, M., Honey, R.. C., Killcross, S. A., & Oswald, C J. P. (2001). Excitotoxic lesions of the hippocampus leave sensory preconditioning intact: implications for models of hippocampal function. Behavioral Neuroscience, 115, 1357-1362.
    • Ward-Robinson, J., & Hall, G. (1996). Backward sensory preconditioning. Journal of Experimental Psychology: Animal Behavior Processes, 22, 395-404.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article