LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects: TS
This paper presents a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques because it uses cylindrical lenses as the objective lens in a Michelson interferometric configuration to enable the measurement of long profiles. The adjustable profile length in our experimental setup, determined by the NA of the illuminating system and the aperture of cylindrical lenses, is up to 10 mm. To simulate real-time surface inspection, large-scale 3D surface measurement was carried out by translating the tested sample during the measurement procedure. Two step height surfaces were measured and the captured interferograms were analysed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Jiang, X., et al., Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise. Applied Optics, 2010.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article