Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Urban und Fischer Verlag
Languages: English
Types: Article
Subjects: QL
Concatenated SSU (18S) and partial LSU (28S) sequences (~2 kb) from 12 ingroup taxa, comprising 2 phoronids, 2 members of each of the craniid, discinid, and lingulid inarticulate brachiopod lineages, and 4 rhynchonellate, articulate brachiopods (2 rhynchonellides, 1 terebratulide and 1 terebratellide) were aligned with homologous sequences from 6 protostome, deuterostome and sponge outgroups (3964 sites). Regions of potentially ambiguous alignment were removed, and the resulting data (3275 sites, of which 377 were parsimony-informative and 635 variable) were analysed by parsimony, and by maximum and Bayesian likelihood using objectively selected models. There was no base composition heterogeneity. Relative rate tests led to the exclusion (from most analyses) of the more distant outgroups, with retention of the closer pectinid and polyplacophoran (chiton). Parsimony and likelihood bootstrap and Bayesian clade support values were generally high, but only likelihood analyses recovered all brachiopod indicator clades designated a priori. All analyses confirmed the monophyly of (brachiopods+phoronids) and identified phoronids as the sister-group of the three inarticulate brachiopod lineages. Consequently, a revised Linnean classification is proposed in which the subphylum Linguliformea comprises three classes: Lingulata, ‘Phoronata’ (the phoronids), and ‘Craniata’ (the current subphylum Craniiformea). Divergence times of all nodes were estimated by regression from node depths in non-parametrically rate-smoothed and other chronograms, calibrated against palaeontological data, with probable errors not less than 50 My. Only three predicted brachiopod divergence times disagree with palaeontological ages by more than the probable error, and a reasonable explanation exists for at least two. Pruning long-branched ingroups made scant difference to predicted divergence time estimates. The palaeontological age calibration and the existence of Lower Cambrian fossils of both main brachiopod clades together indicate that initial genetic divergence between brachiopod and molluscan (chiton) lineages occurred well before the Lower Cambrian, suggesting that much divergence between metazoan phyla took place in the Proterozoic.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abouheif, E., Zardoya, R., Meyer, A., 1998. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J. Mol. Evol. 47, 394-405.
    • Adoutte, A., Philippe, H., 1993. The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis. In: Pichon, Y. (Ed.), Comparative Molecular Neurobiology. Birkha¨ user, Basel, pp. 1-30.
    • Ajuh, P.M., Heeney, P.A., Maden, B.E., 1991. Xenopus borealis and Xenopus laevis 28S ribosomal DNA and the complete 40S ribosomal precursor RNA coding units of both species. Proc. R. Soc. London B 245, 65-71.
    • Blakesley, R.W., Hansen, N.F., Mullikin, J.C., Thomas, P.J., McDowell, J.C., Maskeri, B., Young, A.C., Benjamin, B., Brooks, S.Y., Coleman, B.I., Gupta, J., Ho, S.-L., Karlins, E.M., Maduro, Q.L., Stantripop, S., Tsurgeon, C., Vogt, J.L., Walker, M.A., Masiello, C.A., Guan, X., Bouffard, G.G., Green, E.D., 2004. An intermediate grade of finished genomic sequence suitable for comparative analyses. Genome Res. 14, 2235-2244.
    • Brochu, C., 2004. Calibration age and quartet divergence date estimation. Evolution 58, 1375-1382.
    • Carlson, S.J., 1990. Phylogenetic relationships among brachiopod higher taxa. In: McKinnon, D.I., Lee, D.E., Campbell, J.D. (Eds.), Brachiopods through Time. Balkema, Rotterdam, pp. 3-10.
    • Carlson, S.J., 1995. Phylogenetic relationships amongst brachiopods. Cladistics 11, 131-197.
    • Carlson, S.J., Leighton, L.R., 2001. The phylogeny and classification of Rhynchonelliformea. In: Carlson, S.J., Sandy, M.R. (Eds.), Brachiopods Ancient and Modern. A tribute to G. Arthur Cooper, vol. 7. Paleontol. Soc. Pap., Pittsburgh, pp. 27-51.
    • Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552.
    • Cavalier-Smith, T., 1998. A revised six-kingdom system of life. Biol. Rev. 73, 203-266.
    • Cavalier-Smith, T., Allsopp, M.T.E.P., Chao, E.E., BouryEsnault, N., Vacelet, J., 1996. Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can. J. Zool. 74, 2031-2045.
    • Chen, J., Zhou, G., 1997. Biology of the Chengjiang fauna. Bull. Natl. Mus. Sci. 10, 11-105.
    • Cohen, B.L., 2000. Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov). Proc. R. Soc. London B 267, 225-231.
    • Cohen, B.L., 2001. Genetics and molecular systematics of brachiopods. In: Carlson, S.J., Sandy, M.R. (Eds.), Brachiopods Ancient and Modern. A tribute to G. Arthur Cooper, Vol. 7. Paleontol. Soc. Pap., Pittsburgh, pp. 53-67.
    • Cohen, B.L., 2005. Not armour, but biomechanics, ecological opportunity and increased fecundity as keys to the origin and expansion of the mineralised benthic metazoan fauna. Biol. J. Linn. Soc. 85, 483-490.
    • Cohen, B.L., Gawthrop, A.B., 1996. Brachiopod molecular phylogeny. In: Copper, P., Jin, J. (Eds.), Brachiopods: Proceedings of the Third International Brachiopod Congress, Sudbury, Ontario, 1995. Balkema, Rotterdam, pp. 73-80.
    • Cohen, B.L., Gawthrop, A.B., 1997. The brachiopod genome. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H1, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas, pp. 189-211.
    • Cohen, B.L., Gawthrop, A.B., Cavalier-Smith, T., 1998a. Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Phil. Trans. R. Soc. B 353, 2039-2061.
    • Cohen, B.L., Stark, S., Gawthrop, A.B., Burke, M.E., Thayer, C.W., 1998b. Comparison of articulate brachiopod nuclear and mitochondrial gene trees leads to a clade-based redefinition of protostomes (Protostomozoa) and deuterostomes (Deuterostomozoa). Proc. R. Soc. London B 265, 475-482.
    • Cohen, B.L., Holmer, L.E., Lu¨ ter, C., 2003. The brachiopod fold: a neglected body plan hypothesis. Palaeontology 46, 59-65.
    • Cohen, B.L., Ame´ ziane, N., Ele´ aume, M., Richer de Forges, B., 2004. Crinoid phylogeny: a preliminary analysis (Echinodermata: Crinoidea). Mar. Biol. 144, 605-617.
    • Cusack, M., Williams, A., Buckman, J.O., 1999. Chemicostructural evolution of linguloid brachiopod shells. Palaeontology 42, 799-840.
    • Cutler, D.J., 2000. Estimating divergence times in the presence of an overdispersed molecular clock. Mol. Biol. Evol. 17, 1647-1660.
    • Emig, C.C., 1977a. Embryology of Phoronida. Am. Zool. 17, 21-37.
    • Emig, C.C., 1977b. Un nouvel embranchement: les Lophophorates. Bull. Soc. Zool. Fr. 102, 341-344.
    • Emig, C.C., 1979. British and other phoronids. In: Kermack, D.M., Barnes, R.S.K. (Eds.), Synopses of the British Fauna (New Series) 13. Academic Press, London, pp. 1-57.
    • Emig, C.C., 1982. The biology of Phoronida. Adv. Mar. Biol. 19, 1-89.
    • Fenton, M.A., Fenton, C.L., 1934. Scolithus as a fossil phoronid. Pan-Am. Geol. 61, 341-348.
    • Freeman, G., 2000. Regional specification during embryogenesis in the craniiform brachiopod Crania anomala. Dev. Biol. 22, 219-238.
    • Freeman, G., Lundelius, J.W., 1999. Changes in the timing of mantle formation and larval life history traits in linguliform and craniiform brachiopods. Lethaia 32, 197-217.
    • Gilbert, D., 1993. SeqApp. Computer program available by FTP from Molecular Biology Software Archive. University of Indiana, Bloomington.
    • Gorjansky, W.J., Popov, L.Y., 1986. On the origin and systematic position of the calcareous-shelled inarticulate brachiopods. Lethaia 19, 233-240.
    • Gradstein, F.M., Ogg, J.G., 2004. Geologic time scale. Lethaia 37, 175-181.
    • Gradstein, F.M., Ogg, J.G., Smith, A.G., 37 others, 2004. A Geologic Time Scale, 2004. Cambridge University Press, Cambridge.
    • Halanych, K., 1995. The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Mol. Phylog. Evol. 4, 72-76.
    • Halanych, K.M., Bacheller, J.D., Aguinaldo, A.M.A., Liva, S.M., Hillis, D.M., Lake, J.A., 1995. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267, 1641-1643.
    • Halanych, K.M., Bacheller, J.D., Aguinaldo, A.M.A., Liva, S.M., Hillis, D.M., Lake, J.A., 1996. Lophophorate phylogeny. Science 272, 283.
    • Hatschek, B., 1888. Lehrbuch der Zooogie. Gustav Fischer, Jena.
    • Helfenbein, K., 2000. Phoronids and articulate brachiopods: mitochondrial genomes, phylogeny and molecular evolution, abstract In: The Millenium Brachiopod Congress, London. Natural History Museum, London.
    • Helfenbein, K., Boore, J.L., 2003. The mitochondrial genome of Phoronis architecta - comparisons demonstrate that phoronids are lophotrochozoan protostomes. Mol. Biol. Evol. 21, 153-157.
    • Hendriks, L., Van Broeckhoven, C., Vandenberghe, A., van de Peer, Y., De Wachter, R., 1988. Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma californica and evolutionary relationships amongst eukaryotic phyla. Eur. J. Biochem. 177, 15-20.
    • Hillis, D.M., Dixon, M.T., 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411-453.
    • Hillis, D.M., Moritz, C., Mable, B.K. (Eds.), 1996. Molecular Systematics. Sinauer Associates, Sunderland, MA.
    • Holmer, L.E., 2001. Phylogeny and classification: Linguliformea and Craniiformea. In: Carlson, S.J., Sandy, M.R. (Eds.), Brachiopods Ancient and Modern. A tribute to G. Arthur Cooper, vol. 7. Paleontol. Soc. Pap., Pittsburgh, pp. 11-26.
    • Holmer, L., Popov, L.E., 2000. Lingulida. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H2, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas, pp. 30-32.
    • Huson, D.H., 1998. SplitsTree: analysing and visualizing evolutionary data. Bioinformatics 14, 68-73.
    • Kaesler, R.L. (Ed.), 1997-2002 and in press. Treatise on Invertebrate Paleontology. Brachiopoda, Parts H1-6, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.
    • Keightley, P.D., Johnson, T., 2004. MCALIGN: stochastic alignment of noncoding DNA sequences based on an evolutionary model of sequence evolution. Genome Res. 14, 442-450.
    • Kenchington, E.L.R.I., Naidu, K.S., Roddick, D.L., Cook, D.I., Zouros, E., 1993. Use of biochemical genetic markers to discriminate between adductor muscle of the sea scallop (Placopecten magellanicus) and the Iceland scallop (Chlamys islandica). Can. J. Fish. Aquat. Sci. 50, 1222-1228.
    • Kim, C.B., Moon, S.Y., Gelder, S.R., Kim, W., 1996. Phylogenetic relationships of annelids, molluscs and arthropods evidenced from molecules and morphology. Mol. Phylog. Evol. 6, 207-215.
    • Kolaczkowski, B., Thornton, J.W., 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980-984.
    • Lee, D.E., MacKinnon, D.I., Smirnova, T.N., Baker, P.G., Boucot, A.J., Yu-Gan, J., Dong-Li, S., in press. Order Terebratulida, In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H5, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas.
    • Levinton, J., Dubb, L., Wray, G.A., 2004. Simulations of evolutionary radiations and their application to understanding the probablility of a Cambrian explosion. J. Paleontol. 78, 31-38.
    • Li, G., Xiao, S., 2004. Tannuolina and Micrina (Tannuolinidae) from the Lower Cambrian of eastern Yunnan, south China, and their scleritome reconstruction. J. Paleontol. 78, 900-913.
    • Littlewood, D.T.J., Smith, A.B., Clough, K.A., Emson, R.H., 1997. The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol. J. Linn. Soc. 61, 409-438.
    • MacKinnon, D.I., Biernat, G., 1970. The probable affinities of the trace fossil Diorygma atrypophilia. Lethaia 3, 163-172.
    • Maddison, D.R., Maddison, W.P., 2001. MacClade 4: Analysis of Phylogeny and Character Evolution. Sinauer Associates, Sunderland, MA.
    • Maddison, D.R., Swofford, D.L., Maddison, W.P., 1997. NEXUS: an extensible file format for systematic information. Syst. Biol. 46, 590-621.
    • Malia Jr., M.J., Lipscomb, D.L., Allard, M.W., 2003. The misleading effects of composite taxa in supermatrices. Mol. Phylog. Evol. 27, 522-527.
    • Mallatt, J., Winchell, C.J., 2002. Testing the new animal phylogeny: first use of combined large-subunit and smallsubunit rRNA gene sequences to classify the protostomes. Mol. Biol. Evol. 19, 289-301.
    • Mallatt, J.M., Garey, J.R., Schultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylog. Evol. 31, 178-191.
    • Manuel, M., Borchiellini, C., Alivon, E., Le Parco, Y., BouryEsnault, J.V., 2003. Phylogeny and evolution of calcareous sponges: monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Syst. Biol. 52, 311-333.
    • Medina, M., Collins, A.G., Silberman, J.D., Sogin, M.L., 2001. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. PNAS (Washington) 98, 9707-9712.
    • Nylander, J., 2004. MrModeltest 2.0. Computer program distributed by the author. Evolutionary Biology Centre, Uppsala University.
    • Okusu, A., Schwabe, E., Eernisse, D.J., Giribet, G., 2003. Towards a phylogeny of chitons (Mollusca, Polyplacophora) based on a combined analysis of five molecular loci. Org. Divers. Evol. 4, 281-302.
    • Peterson, K., Eernisse, D.J., 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA sequences. Evol. Dev. 3, 170-205.
    • Popov, L.E., Bassett, M.G., Holmer, L.E., Laurie, J., 1993. Phylogenetic analysis of higher taxa of Brachiopoda. Lethaia 26, 1-5.
    • Posada, D., 2001. Selecting the best-fit model of nucleotide substitution. Syst. Biol. 50, 580-601.
    • Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: advantages of Aikake information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793-808.
    • Posada, D., Crandall, K.P., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818.
    • Rambaut, A., Bromham, L., 1998. Estimating divergence dates from molecular sequences. Mol. Biol. Evol. 15, 442-448.
    • Rice, E.L., 1990. Nucleotide sequence of the 18S ribosomal RNA gene from the Atlantic sea scallop Placopecten magellanicus (Gmelin, 1791). Nucleic Acids Res. 18, 5551.
    • Robinson, M., Gouy, M., Gautier, C., Mouchiroud, D., 1998. Sensitivity of the relative-rate test to taxonomic sampling. Mol. Biol. Evol. 15, 1091-1098.
    • Ronquist, F.R., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.
    • de Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Carroll, S.B., Balavoine, G., 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772-776.
    • Rowell, A.J., 1982. The monophyletic origin of Brachiopoda. Lethaia 15, 299-307.
    • Ruiz-Trillo, I., Ruitort, M., Fourcade, H.M., Baguna, J., Boore, J.L., 2004. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol. Phylog. Evol. 33, 321-332.
    • Runnegar, B., Pojeta, J., Taylor, M.E., Collins, D., 1979. New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland: evidence for the early history of polyplacophoran molluscs. J. Paleontol. 53, 1374-1394.
    • Saito, M., Kojima, S., Endo, K., 2000. Mitochondrial COI sequences of brachiopods: genetic code shared with protostomes; limits of utility for phylogenetic reconstruction. Mol. Phylog. Evol. 15, 331-344.
    • Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular Cloning. a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
    • Sanderson, M.J., 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301-302.
    • Schnare, M.N., Damberger, S.H., Gray, M.W., Gutell, R.R., 1996. Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23S-like) ribosomal RNA. J. Mol. Biol. 256, 701-719.
    • Shimodaira, H., Hasegawa, M., 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114-1116.
    • Smith, A.G., Smith, D.G., Funnell, B.M., 1994a. Atlas of Mesozoic and Cenozoic Coastlines. Cambridge University Press, Cambridge.
    • Smith, S.W., Overbeek, R., Woese, C.R., Gilbert, W., Gillevet, P.M., 1994b. The Genetic Data Environment, an expandable GUI for multiple sequence analysis. Cabios 10, 671-675.
    • Steiner, G., Muller, M., 1996. What can 18S rDNA do for bivalve phylogeny? J. Mol. Evol. 43, 58-70.
    • Sundberg, P., Gibson, R., Olsson, U., 2003. Phylogenetic analysis of a group of palaeonemerteans (Nemertea) including two new species from Queensland and the Great Barrier Reef, Australia. Zool. Scripta 32, 279-296.
    • Swofford, D.L., 2000. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, MA.
    • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.
    • Williams, A., 1997. Shell structure. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H1, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas, pp. 267-320.
    • Williams, A., Wright, A.D., 1970. Shell structure of the Craniacea and other calcareous inarticulate Brachiopoda. Spec. Pap. Palaeontol. 7, 1-51.
    • Williams, A., Carlson, S.J., Brunton, H.C., Holmer, L., Popov, L., 1996. A supra-ordinal classification of the Brachiopoda. Phil. Trans. R. Soc. B 351, 1171-1193.
    • Williams, A., Cusack, M., Buckman, J.O., 1998. Siliceous tablets in the larval shells of apatitic discinid brachiopods. Science 279, 2094-2096.
    • Williams, A., Carlson, S.J., Brunton, C.H.C.B, 2000a. Craniiformea. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H2, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas, pp. 158-192.
    • Williams, A., Carlson, S.J., Brunton, C.H.C.B, 2000b. Linguliformea. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H2, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas, pp. 30-157.
    • Williams, A., Carlson, S.J., Brunton, C.H.C.B, 2000c. Rhynchonelliformea. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H2-5, Brachiopoda, revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas, p. 193 in progress.
    • Williams, A., Lu¨ ter, C., Cusack, M., 2001. The nature of siliceous mosaics forming the first shell of the brachiopod Discinisca. J. Struct. Biol. 134, 25-34.
    • Winchell, C.J., Sullivan, J., Cameron, C.B., Swalla, B.J., Mallatt, J., 2002. Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol. Biol. Evol. 19, 762-776.
    • Winnepenninckx, B., Backeljau, T., De Wachter, R., 1993. Complete small ribosomal subunit RNA sequence of the chiton Acanthopleura japonica. Nucleic Acids Res. 21, 1670.
    • Winnepenninckx, B., Backeljau, T., De Wachter, R., 1994. Small ribosomal RNA and the phylogeny of the Mollusca. Nautilus (Suppl.) 2, 98-110.
    • Winnepenninckx, B., Backeljau, T., De Wachter, R., 1995a. Phylogeny of protostome worms derived from 18S rRNA sequences. Mol. Biol. Evol. 12, 641-649.
    • Winnepenninckx, B., Backeljau, T., Mackey, L.Y., Brooks, J.M., De Wachter, R., Kumar, S., Garey, J.L., 1995b. 18S rRNA data indicate that aschelminths are polyphyletic in origin and consist of at least three distinct clades. Mol. Biol. Evol. 12, 1132-1137.
    • Winnepenninckx, B., Backeljau, T., van de Peer, Y., De Wachter, R., 1992. Structure of the small ribosomal subunit RNA of the pulmonate snail, Limicolaria kambeul, and phylogenetic analysis of the Metazoa. FEBS Lett. 309, 123-126.
    • Wray, G.A., Levinton, J.S., Shapiro, L.H., 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274, 568-573.
    • Xian-Guang, H., Aldridge, R.J., Bergstro¨ m, J., Siveter, D.J., Xiang-Hong, F., 2004. The Cambrian Fossils of Chengjiang, China: the Flowering of Early Animal Life. Blackwell, Oxford.
    • Yatsu, N., 1902. On the development of Lingula anatina. J. Coll. Sci. Imp. Univ. (Tokyo) 17, 1-112 pls. 1-8.
    • Zrzavy, J., Mihulka, S., Kepka, P., Bezdek, A., Tietz, D., 1998. Phylogeny of the metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14, 249-285.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    4b11Protein Data Bank

Share - Bookmark

Cite this article