LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects:
The quality of the decoded video is affected by errors occurring in the various layers of the protocol stack. In this thesis, disjoint errors occurring in different layers of the protocol stack are investigated with the primary objective of demonstrating the flexibility of the source coding layer. In the first part of the thesis, the errors occurring in the editing layer, due to the coexistence of different video standards in the broadcast market, are addressed. The problems investigated are ‘Field Reversal’ and ‘Mixed Pulldown’. Field Reversal is caused when the interlaced video fields are not shown in the same order as they were captured. This results in a shaky video display, as the fields are not displayed in chronological order. Additionally, Mixed Pulldown occurs when the video frame-rate is up-sampled and down-sampled, when digitised film material is being standardised to suit standard televisions. Novel image processing algorithms are proposed to solve these problems from the source coding layer. In the second part of the thesis, the errors occurring in the transmission layer due to data corruption are addressed. The usage of block level source error-resilient methods over bit level channel coding methods are investigated and improvements are suggested. The secondary objective of the thesis is to optimise the proposed algorithm’s architecture for real-time implementation, since the problems are of a commercial nature. The Field Reversal and Mixed Pulldown algorithms were tested in real time at MTV (Music Television) and are made available commercially through ‘Cerify’, a Linux-based media testing box manufactured by Tektronix Plc. The channel error-resilient algorithms were tested in a laboratory environment using Matlab and performance improvements are obtained.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article