LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier Ltd.
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Geophysics
A new calibration strategy for integral-type nonlocal damage models for quasi-brittle materials is proposed. It is based on the assumption that in the fracture process zone in quasi-brittle materials the large majority of energy is dissipated in a localised rough crack. Measuring the roughness of the fracture surface allows for calibrating the interaction radius of nonlocal models by matching experimental and numerical standard deviations of spatial distributions of dissipated energy densities. Firstly, fracture analyses with a lattice model with random fields for strength and fracture energy are used to support the assumptions of the calibration process. Then, the calibration strategy is applied to an integral-type nonlocal damage model for the case of a fracture surface of a three-point bending test.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bažant, Z.P., 2002. Scaling of Structural Strength. Hermes-Penton, London.
    • Bažant, Z.P., Jirásek, M., 2002. Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. ASCE 128, 1119-1149.
    • Bažant, Z.P., Pijaudier-Cabot, G., 1989. Measurement of characteristic length of nonlocal continuum. J. Eng. Mech. ASCE 115, 755-767.
    • Bellégo, C.L., Dubé, J.F., Pijaudier-Cabot, G., Gérard, B., 2003. Calibration of nonlocal damage model from size effect tests. Eur. J. Mech. A/Solids 22, 33-46.
    • Bolander, J.E., Hikosaka, H., He, W.J., 1998. Fracture in concrete specimens of differing scale. Eng. Comput. 15, 1094-1116.
    • Bolander, J.E., Saito, S., 1998. Fracture analysis using spring networks with random geometry. Eng. Fract. Mech. 61, 569-591.
    • Carmeliet, J., 1999. Optimal estimation of gradient damage parameters from localization phenomena in quasi-brittle materials. Mech. Cohesive-Frictional Mater. 4, 1-16.
    • Cedolin, L., Poli, S.D., Iori, I., 1987. Tensile behavior of concrete. J. Eng. Mech. 113, 431-449.
    • Delaplace, A., Pijaudier-Cabot, G., Roux, S., 1996. Progressive damage in discrete models and consequences on continuum modelling. J. Mech. Phys. Solids 44, 99-136.
    • Grassl, P., Bažant, Z.P., 2009. Random lattice-particle simulation of statistical size effect in quasi-brittle structures failing at crack initiation. J. Eng. Mech. 135, 85-92.
    • Grassl, P., Fahy, C., Gallipoli, D., Wheeler, S.J., 2015. On a 2d hydro-mechanical lattice approach for modelling hydraulic fracture. J. Mech. Phys. Solids 75, 104-118.
    • Grassl, P., Grégoire, D., Solano, L.R., Pijaudier-Cabot, G., 2012. Meso-scale modelling of the size effect on the fracture process zone of concrete. Int. J. Solids Struct. 49, 1818-1827.
    • Grassl, P., Jirásek, M., 2010. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension. Int. J. Solids Struct. 47, 957-968.
    • Grassl, P., Xenos, D., Jirásek, M., Horák, M., 2014. Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries. Int. J. Solids Struct. 51, 3239-3251.
    • Grégoire, D., Rojas-Solano, L.B., Lefort, V., Grassl, P., Saliba, J., Regoin, J.P., Loukili, A., Pijaudier-Cabot, G., 2015. Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data. Int. J. Numer. Anal. Methods Geomech. http://dx.doi.org/10.1002/nag.2363.
    • Grégoire, D., Rojas-Solano, L.B., Pijaudier-Cabot, G., 2013. Failure and size effect for notched and unnotched concrete beams. Int. J. Numer. Anal. Methods Geomech. 37, 1434-1452.
    • Haidar, K., Pijaudier-Cabot, G., Dubé, J.F., Loukili, A., 2005. Correlation between internal length, the fracture process zone and size effect in model materials. Mater. Struct. 35, 201-210.
    • Herrmann, H.J., Hansen, A., Roux, S., 1989. Fracture of disordered elastic lattices in 2 dimensions. Phys. Rev. B 39, 637-648.
    • Hoover, C., Bažant, Z.P., Vorel, J., Wendner, R., Hubler, M., 2013. Comprehensive concrete fracture tests: description and results. Eng. Fract. Mech. 114, 92-103.
    • Iacono, C., Sluys, L.J., van Mier, J.G.M., 2006. Estimation of model parameters in nonlocal damage theories by inverse analysis techniques. Comput. Methods Appl. Mech. Eng. 195, 7211-7222.
    • Iacono, C., Sluys, L.J., van Mier, J.G.M., 2008. Calibration of a higher-order continuum model using global and local data. Eng. Fract. Mech. 75, 4642-4665.
    • Jirásek, M., Rolshoven, S., Grassl, P., 2004. Size effect on fracture energy induced by non-locality. Int. J. Numer. Anal. Methods Geomech. 28, 653-670.
    • Landis, E.N., 1999. Micro-macro fracture relationships and acoustic emissions in concrete. Constr. Build. Mater. 13, 65-72.
    • Lange, D.A., Jennings, H.M., Shah, S.P., 1993. Relationship between fracture surface-roughness and fracture-behavior of cement paste and mortar. J. Am. Ceram. Soc. 76, 589-597.
    • Mihashi, H., Nomura, N., Niiseki, S., 1991. Influence of aggregate size on fracture process zone of concrete detected with 3-dimensional acoustic-emission technique. Cem. Concr. Res. 21, 737-744.
    • Morel, S., Bonamy, D., Ponson, L., Bouchaud, E., 2008. Transient damage spreading and anomalous scaling in mortar crack surfaces. Phys. Rev. E 78, 016112.
    • Mourot, G., Morel, S., Bouchaud, E., Valentin, G., 2006. Scaling properties of mortar fracture surfaces. Int. J. Fract. 140, 39-54.
    • Muralidhara, S., Prasad, B.K., Eskandari, H., Karihaloo, B.L., 2010. Fracture process zone size and true fracture energy of concrete using acoustic emission. Constr. Build. Mater. 24, 479-486.
    • Nirmalendran, S., Horii, H., 1992. Analytical modelling of microcracking and bridging in fracture of quasi-brittle materials. J. Mech. Phys. Solids 40, 863-886.
    • Otsuka, K., Date, H., 2000. Fracture process zone in concrete tension specimen. Eng. Fract. Mech. 65, 111-131.
    • Patzák, B., 2012. OOFEM - an object-oriented simulation tool for advanced modeling of materials and structures. Acta Polytech. 52, 59-66.
    • Pijaudier-Cabot, G., Bažant, Z.P., 1987. Nonlocal damage theory. J. Eng. Mech. ASCE 113, 1512-1533.
    • Planas, J., Elices, M., Guinea, G.V., 1992. Measurement of the fracture energy using three-point bend tests: part 2-influence of bulk energy dissipation. Mater. Struct. 25, 305-312.
    • Ponson, L., Bonamy, D., Auradou, H., Mourot, G., Morel, S., Bouchaud, E., Guillot, C., Hulin, J., 2006. Anisotropic self-affine properties of experimental fracture surfaces. Int. J. Fract. 140, 27-37.
    • Schlangen, E., Van Mier, J.G.M., 1992. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater. Struct. 25, 534-542.
    • Shinozuka, M., Jan, C.M., 1972. Digital simulation of random processes and its applications. J. Sound Vib. 25, 111-128.
    • Skarżyński, L., Syroka, E., Tejchman, J., 2011. Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams. Strain 47, e319-e332.
    • Wu, Z., Rong, H., Zheng, J., Xu, F., Dong, W., 2011. An experimental investigation on the FPZ properties in concrete using digital image correlation technique. Eng. Fract. Mech. 78, 2978-2990.
    • Zubelewicz, A., Bažant, Z.P., 1987. Interface modeling of fracture in aggregate composites. J. Eng. Mech. ASCE 113, 1619-1630.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article